COPD Agents
Therapeutic Class Review (TCR)

September 11, 2019

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management.

All requests for permission should be mailed to:

Magellan Rx Management
Attention: Legal Department
6950 Columbia Gateway Drive
Columbia, Maryland 21046

The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to PSTCREditor@magellanhealth.com.
FDA-APPROVED INDICATIONS

<table>
<thead>
<tr>
<th>Drug</th>
<th>Manufacturer</th>
<th>Indication(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimuscarinics – Short-Acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipratropium inhalation solution</td>
<td>generic</td>
<td>For maintenance treatment of bronchospasm associated with COPD, including chronic bronchitis and emphysema</td>
</tr>
<tr>
<td>ipratropium inhalation aerosol MDI (Atrovent® HFA)</td>
<td>Boehringer-Ingelheim</td>
<td>As a bronchodilator for maintenance treatment of bronchospasm associated with COPD, including chronic bronchitis and emphysema</td>
</tr>
<tr>
<td>Antimuscarinics – Long-Acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aclidinium bromide (Tudorza® Pressair®©)</td>
<td>Circassia</td>
<td>For the maintenance treatment of patients with COPD</td>
</tr>
<tr>
<td>glycopyrrolate (Lonhala® Magnair®©)</td>
<td>Sunovion</td>
<td>For the long-term, maintenance treatment of airflow obstruction in patients with COPD, including chronic bronchitis and/or emphysema</td>
</tr>
<tr>
<td>glycopyrrolate (Seebri™ Neohaler®©)</td>
<td>Sunovion</td>
<td>For the long-term, maintenance treatment of airflow obstruction in patients with COPD, including chronic bronchitis and/or emphysema</td>
</tr>
<tr>
<td>revefenacin (Yupelri®©)</td>
<td>Mylan</td>
<td>For the maintenance treatment of patients with COPD</td>
</tr>
<tr>
<td>tiotropium inhalation powder DPI (Spiriva HandiHaler®©)</td>
<td>Boehringer-Ingelheim</td>
<td>For the long-term, once-daily maintenance treatment of bronchospasm associated with COPD, including chronic bronchitis and emphysema To reduce COPD exacerbations</td>
</tr>
<tr>
<td>tiotropium bromide inhalation spray (Spiriva® Respimat®©)</td>
<td>Boehringer-Ingelheim</td>
<td>For the long-term, once-daily, maintenance treatment of bronchospasm associated with COPD and for reducing COPD exacerbations For the long-term, once-daily, maintenance treatment of asthma in patients ≥ 6 years old</td>
</tr>
<tr>
<td>umeclidinium (Incruse® Ellipta®©)</td>
<td>GlaxoSmithKline</td>
<td>For the maintenance treatment of patients with COPD</td>
</tr>
<tr>
<td>Antimuscarinic/Beta₂-Agonist Combinations – Short-Acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>albuterol/ipratropium inhalation solution</td>
<td>generic</td>
<td>For the treatment of bronchospasm associated with COPD in patients requiring more than 1 bronchodilator</td>
</tr>
<tr>
<td>albuterol/ipratropium MDI CFC-free (Combivent® Respimat®©)</td>
<td>Boehringer-Ingelheim</td>
<td>For use in patients with COPD on a regular aerosol bronchodilator who continue to have evidence of bronchospasm and require a second bronchodilator</td>
</tr>
<tr>
<td>Antimuscarinic/Beta₂-Agonist Combinations – Long-Acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aclidinium bromide/formoterol (Duaklir® Pressair®©)</td>
<td>AstraZeneca/Circassia</td>
<td>For the maintenance treatment of patients with COPD</td>
</tr>
<tr>
<td>glycopyrrolate/formoterol (Bevespi Aerosphere™©)</td>
<td>AstraZeneca</td>
<td>For the maintenance treatment of patients with COPD, including chronic bronchitis and/or emphysema</td>
</tr>
<tr>
<td>glycopyrrolate/indacaterol (Utibron® Neohaler®©)</td>
<td>Sunovion</td>
<td>For the long-term, maintenance treatment of airflow obstruction in patients with COPD</td>
</tr>
<tr>
<td>tiotropium/olodaterol (Stiolto™ Respimat®©)</td>
<td>Boehringer-Ingelheim</td>
<td>For the long-term, once-daily maintenance treatment of patients with COPD, including bronchitis and/or emphysema</td>
</tr>
<tr>
<td>umeclidinium/vilanterol (Anoro® Ellipta®©)</td>
<td>GlaxoSmithKline</td>
<td>For the maintenance treatment of patients with COPD</td>
</tr>
</tbody>
</table>

CFC = chlorofluorocarbon; DPI = dry powder inhaler; HFA = hydrofluoralkane; MDI = metered-dose inhaler
FDA-Approved Indications (continued)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Manufacturer</th>
<th>Indication(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>roflumilast (Daliresp<sup>®</sup>)<sup>17</sup></td>
<td>AstraZeneca</td>
<td>As a treatment to reduce the risk of COPD exacerbations in patients with severe COPD associated with chronic bronchitis and a history of exacerbations</td>
</tr>
</tbody>
</table>

OVERVIEW

COPD

Chronic obstructive pulmonary disease (COPD) is a disease state characterized by the presence of airflow obstruction due to chronic bronchitis or emphysema. The airflow obstruction is generally progressive, may be accompanied by airway hyperreactivity, and may be partially reversible.¹⁸ This progressive persistent obstruction or limitation of airflow is associated with an enhanced chronic inflammatory response in both the airways and the lung to noxious particles or gases. Exacerbations and comorbidities contribute to the overall severity in individual patients. COPD continues to be a leading cause of chronic morbidity and mortality worldwide carrying with it significant economic and social burden.¹⁹ COPD is projected by the World Health Organization (WHO) to become the third leading cause of death by 2030.²⁰ In their 2017 National Health Interview Survey, the CDC reported that the percentage of adults who were diagnosed with chronic bronchitis in the past year was 3.5% and those that have ever been diagnosed with emphysema was 1.4%.²¹ However, the United States Preventive Services Task Force (USPSTF) recommends against routine screening in asymptomatic adults (recommendation grade D).²²

Although the precise distinctions between chronic bronchitis and emphysema are a subject of debate, common belief holds that chronic bronchitis is responsible for 85% of COPD.²³ Patients with chronic bronchitis experience intermittent airway inflammation and excessive mucus production that leads to frequent, prolonged episodes of productive cough. In contrast, 15% of patients with COPD suffer primarily from emphysema, in which destruction of the infrastructure of alveoli and distal airspaces that provide gas exchange and elastic recoil occurs.²⁴ Both chronic bronchitis and emphysema predispose patients to a common collection of symptoms and impairments in respiratory function, such as reductions in forced expiratory volume in 1 second (FEV₁), forced vital capacity (FVC), FEV₁/FVC ratio, and forced expiratory flow (FEF₂₅₋₇₅%).

The 2019 Global Initiative for Chronic Obstructive Lung Disease (GOLD) Global Strategy for the Diagnosis, Management, and Prevention of COPD guidelines stresses that a diagnosis of COPD should be considered in any individual who has dyspnea, chronic cough/sputum production, and a history of exposure to risk factors specific to the disease. Spirometry is required to effectively establish a clinical diagnosis of COPD.²⁵ A post-bronchodilator FEV₁/FVC < 0.7 confirms presence of airflow limitation and a diagnosis of COPD. The assessment of FEV₁ alone is a poor descriptor of disease status. Individual assessment of the patient’s symptoms, future risks of exacerbations, severity of airflow limitation, and comorbidities is essential in guiding therapy. A COPD exacerbation is defined as an acute event characterized by worsening of the patient’s respiratory symptoms that varies from the normal daily variations and requires a change in medication. Hospitalization for a COPD exacerbation signifies a poor diagnosis and increased risk of death. The COPD Assessment Test (CAT, 0 to 40) or the Clinical COPD Questionnaire...
(CCQ) is recommended for a comprehensive assessment of symptoms. The Modified British Medical Research Council questionnaire may be used, but only assesses breathlessness.

Prior to 2017, patient groups were categorized into an alphabetic (ABCD) classification system based on exacerbation risk and symptoms in combination with airway limitation. However, patients are now classified separately by both their GOLD severity (e.g. airflow limitation: 1 to 4) and exacerbation/symptom assessment (e.g. GOLD grade 4, group D). Therefore, exacerbation risk and symptoms alone are used to define the ABCD classification and more emphasis is given to a patient’s symptom burden when evaluating disease severity. The definitions of airflow limitation and numerical values for exacerbations/symptoms have not changed, and are summarized below:

- **Assessment of Airflow Limitation:**
 - GOLD 1: mild, FEV1 ≥ 80% predicted
 - GOLD 2: moderate, FEV1 50% to 79% predicted
 - GOLD 3: severe, FEV1 30% to 49% predicted
 - GOLD 4: very severe, FEV1 < 30% predicted

- **Assessment of Exacerbation Risk and Symptoms:**
 - Patient Group A – Low Risk, Less Symptoms: 0 to 1 exacerbations per year (not leading to hospitalization); and CAT score < 10 or mMRC grade 0 to 1
 - Patient Group B – Low Risk, More Symptoms: 0 to 1 exacerbations per year (not leading to hospitalization); and CAT score ≥ 10 or mMRC grade ≥ 2
 - Patient Group C – High Risk, Less Symptoms: ≥ 2 exacerbations per year or ≥ 1 exacerbation leading to hospitalization; and CAT score < 10 or mMRC grade 0 to 1
 - Patient Group D – High Risk, More Symptoms: ≥ 2 exacerbations per year or ≥ 1 exacerbation leading to hospitalization; and CAT score ≥ 10 or mMRC grade ≥ 2

Bronchodilator medications are central to the symptomatic management of COPD. They improve emptying of the lungs, reduce dynamic hyperinflation at rest and during exercise, and improve exercise performance. They are given either on an as-needed basis for relief of persistent or worsening symptoms or on a regular basis to prevent or reduce symptoms. Regular treatment with long-acting bronchodilators is more effective and convenient than treatment with short-acting agents.Combining bronchodilators of different pharmacological classes may improve efficacy and decrease the risk of side effects as compared to maximizing the dose of a single bronchodilator. Bronchodilators include beta2-agonists and antimuscarinic agents; antimuscarinics are also referred to as anticholinergics. Short-acting and long-acting formulations of each are available.

The 2019 GOLD guidelines recommend treatment plans for COPD based on the aforementioned patient group categories, identified by disease severity (airflow limitation), symptoms, comorbidities and exacerbation/hospitalization risk, although all treatment should be individualized. Bronchodilator medications continue to be central to symptom management of COPD across all groups. For patients in Group A, a short-acting inhaled bronchodilator (beta2-agonist or antimuscarinics) used on an as-needed basis or a long-acting bronchodilator (beta2-agonist or antimuscarinics) is recommended as first choice. For COPD patients in Group B, regular use of a long-acting beta2 agonist (LABA) or long-acting antimuscarinic (LAMA) is recommended, while the combination of a LABA plus a LAMA is an alternative treatment. There is insufficient evidence to recommend one long-acting agent over another. Initial
treatment for Group C patients focuses on monotherapy with a long-acting bronchodilator, with preference given to LAMAs. In Group D patients, initial therapy with a LAMA is recommended as it has effects on both breathlessness and exacerbations. Patients with more severe symptoms (CAT ≥ 20) can be initiated on LABA/LAMA. Prescribers may consider a LABA/inhaled corticosteroid (ICS) combination for patients with blood eosinophil counts ≥ 300 cells/µL as this combination has the greatest likelihood of reducing exacerbations or may be preferred in patients with a history of asthma. There is some evidence for use of triple therapy – ICS/LABA/LAMA – in patients with persistent breathlessness or exercise limitation. If exacerbations still occur with triple therapy, then the oral phosphodiesterase 4 (PDE4) inhibitor roflumilast (Daliresp), which is indicated to decrease the frequency of exacerbations or worsening of symptoms of severe COPD, may be added in patients with an FEV₁ < 50% of predicted and chronic bronchitis. Long-term monotherapy with an ICS at any stage has been shown to be less effective than its use in combination with LABAs. Following initial therapy, patients should be reassessed for attainment of treatment goals and therapy adjusted as needed.

The 2011 American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society (ACP/ACCP/ATS/ERS) Guidelines include a fifth category for disease classification, namely “At Risk”, which includes asymptomatic patients with mild to moderate airflow obstruction (FEV₁/FVC ratio < 0.7 and FEV₁ ≥ 50% predicted) or without airflow obstruction (FEV₁/FVC ratio ≥ 0.7). These guidelines support the idea that history or physical examinations alone are poor predictors of airflow obstruction. Airway obstruction (post-bronchodilator FEV₁/FVC < 0.7) can be expected with the presence of wheezing on auscultation, smoking history greater than 55 pack years, and patient self-report of wheezing. Spirometry was discussed as a key diagnostic tool to determine respiratory disease and the severity of airflow obstruction. The 2011 ACP/ACCP/ATS/ERS guidelines do not support routine treatment with bronchodilators in the asymptomatic “At Risk” group as there are limited data to support that such treatment influences the trajectory of the disease. Albeit a weak recommendation, the 2011 guidelines do suggest that stable, symptomatic COPD patients with an FEV₁ between 60% and 80% may be treated with inhaled bronchodilators (antimuscarinic or LABA). For stable, symptomatic patients with an FEV₁ < 60%, monotherapy with an inhaled bronchodilator is strongly recommended. The type of bronchodilator may be selected based on patient parameters, cost, and adverse effect profile. Combination therapy with an inhaled LABA, LAMA, or ICS may be used in lieu of monotherapy for patients with FEV₁ < 60%; however, the consensus group has offered this as a weak recommendation due to moderate quality evidence. Further, the guidelines suggest there is no clear outline for which patients would benefit the most from combination therapy over monotherapy. In 2017, ERS and ATS produced joint guidelines on the prevention and management of COPD exacerbations. ERA/ATS recommend LAMA use over LABA monotherapy to prevent exacerbations in patients with at least 1 exacerbation during the previous year. ERS/ATS suggest treatment with roflumilast to prevent future exacerbations in patients who have COPD with severe or very severe airflow obstruction and symptoms of chronic bronchitis and exacerbations, despite optimal inhaled therapy.

A 2015 joint guideline from the ACCP and the Canadian Thoracic Society (CTS) also recommends treatments based on data from published trials on decreased acute exacerbations of COPD. They recommend the use of LABAs (Grade 1B) and LAMAs (Grade 1A) over no treatment in patients with moderate to severe COPD, stating that LAMAs are preferred (Grade 1C). Likewise, they recommend short-acting antimuscarinic agents (SAMA) for monotherapy over short-acting beta₂-agonists (SABA) (Grade 2C) but further state that the combination is also preferred over SABA monotherapy (Grade 2B). In addition, LABA or LAMA monotherapy is preferred over SAMA monotherapy (Grade 2C and Grade 1A, respectively).
Maintenance therapy with LABA/ICS is also preferred over monotherapy with either agent alone in patients with severe COPD (range, Grade 1B to 1C). Overall, recommendations in these guidelines are based on qualifying patients as those with mild, moderate, or severe COPD rather than GOLD classification or high-risk.

With the conversion to required chlorofluorocarbon (CFC)-free inhalers, the CFC-free combination albuterol-ipratropium MDI (Combivent Respimat) has been approved for use in the treatment of COPD. Other agents within this class include an oral agent, roflumilast (Daliresp), inhaled SAMA agents (ipratropium solution, albuterol/ipratropium solution) inhaled LAMA, (tiotropium [Spiriva Respimat, Spiriva HandiHaler]), aclidinium (Tudorza Pressair), umeclidinium (Incruce Ellipta), revafenacin (Yupelri) and glycopyrrolate (Seebri Neohaler, Lonhala Magnair), and combination LAMA/LABA agents (aclidinium/formoterol [Duaklir Pressair], glycopyrrolate/formoterol [Bevespi Aerosphere], glycopyrrolate/indacaterol [Utibron Neohaler], tiotropium/olodaterol [Stiolto Respimat], and umeclidinium/vilanterol [Anoro Ellipta]) which are all FDA-approved treatment options in COPD management.

The FDA approved fixed-dose combination inhalers for the maintenance treatment of COPD. These include the dual therapies that contain an ICS and LABA, include budesonide/formoterol (Symbicort®; AstraZeneca), fluticasone furoate/vilanterol (Breo® Ellipta®; GlaxoSmithKline) and fluticasone propionate/salmeterol (Advair® Diskus®; GlaxoSmithKline) and the triple therapy of fluticasone furoate/umeclidinium/vilanterol (Trelegy® Ellipta®; GlaxoSmithKline), the combination of an ICS, an anticholinergic, and a LABA. These products are not included in this therapeutic class review.

Asthma

Medications to treat asthma are classified as controllers or relievers. Controllers are medications taken daily on a long-term basis to maintain asthma control. Relievers are medications used on an as-needed basis that act quickly to reverse bronchoconstriction and relieve symptoms. The mainstay of asthma therapy is the use of ICS drugs and LABAs as controller medications. These agents lead to improvements in lung function and symptoms and reduce the need for SABAs for quick relief.

In 2007, the National Asthma Education and Prevention Panel (NAEPP) released a summary of the third report of the Expert Panel (EPR-3) and recommend that, for patients over age 5 years with moderate persistent asthma or asthma not controlled by low-dose corticosteroids, consideration be given for use of a combination of ICS and LABAs or for increasing the dose of ICS. LAMA agents, such as tiotropium (Spiriva Respimat), are not addressed for chronic management in these guidelines; however, the guidelines do include dosing of SAMA agents, such as ipratropium for the emergency management of acute asthma exacerbations in combination with albuterol or as an alternative to albuterol.

The 2019 Global Initiative for Asthma (GINA) guidelines offer a control-based management plan to adjust treatment in a continuous cycle of assessment, treatment, and review of the patient’s response as it relates to symptom control, future risk of exacerbations, and side effects. If the patient is not controlled on the current regimen, treatment should be stepped up until control is achieved. If control is maintained for at least 2 to 3 months on the current regimen, treatment can be stepped down to the lowest step and dosage that maintains control. The stepwise approach for asthma control in the GINA guidelines is described below. Tiotropium is considered as an alternative add-on controller medication for patients in Step 4.
Stepwise Approach to Asthma Control from 2019 GINA Guidelines

Adults and Adolescents 12 Years of Age And Older

<table>
<thead>
<tr>
<th>Step</th>
<th>Medication Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>As-needed controller medication</td>
</tr>
<tr>
<td></td>
<td>- Recommended: low dose ICS-formoterol*</td>
</tr>
<tr>
<td></td>
<td>- Other Controller Options: low dose ICS taken whenever SABA is taken†</td>
</tr>
<tr>
<td>Step 2</td>
<td>One controller AND an as-needed reliever medication§</td>
</tr>
<tr>
<td></td>
<td>- Preferred controller: low-dose ICS OR as needed low dose ICS-formoterol*</td>
</tr>
<tr>
<td></td>
<td>- Alternative controllers: leukotriene modifier or low dose ICS taken whenever SABA is taken†</td>
</tr>
<tr>
<td>Step 3</td>
<td>One or 2 controllers and an as-needed reliever medication¶</td>
</tr>
<tr>
<td></td>
<td>- Preferred controller: low-dose ICS AND a LABA as maintenance plus</td>
</tr>
<tr>
<td></td>
<td>- Alternative controllers: medium dose ICS OR low dose ICS + leukotriene modifier#</td>
</tr>
<tr>
<td>Step 4</td>
<td>Two or more controllers AND an as-needed reliever medication¶</td>
</tr>
<tr>
<td></td>
<td>- Preferred controller: medium dose ICS + LABA</td>
</tr>
<tr>
<td></td>
<td>- Alternative controllers: high-dose ICS plus add-on tiotropium OR add-on leukotriene modifier#</td>
</tr>
<tr>
<td>Step 5</td>
<td>Higher level of care (phenotypic assessment) and/or add-on treatment AND an as-needed reliever medication¶</td>
</tr>
<tr>
<td></td>
<td>- Preferred controller: high dose ICS-LABA AND refer for phenotypic assessment ± add-on controller treatment (tiotropium, monoclonal antibody treatment [omalizumab [anti-IgE therapy], mepolizumab or reslizumab [anti-IL-5/5R therapy]], dupilumab [anti-IL 4R therapy])</td>
</tr>
<tr>
<td></td>
<td>- Alternative controller add-on: low dose oral corticosteroids (consider side effects)</td>
</tr>
</tbody>
</table>

- Off-label, data only with budesonide-formoterol
- Off-label, separate or combination ICS and SABA inhalers
- Consider adding house dust mite sublingual immunotherapy (SLIT) for sensitized patient with allergic rhinitis and FEV1 > 70% predicted
- Preferred reliever for Step 2 is as-needed low dose ICS-formoterol; alternative reliever is as-needed SABA
- Preferred reliever for Steps 3, 4, and 5 is as-needed low dose ICS-formoterol for patients prescribed maintenance and reliever therapy - Low-dose ICS-formoterol is the reliever for patients prescribed budesonide-formoterol or beclomethasone dipropionate-formoterol maintenance and reliever therapy; alternative reliever is as-needed SABA
- ICS = inhaled corticosteroid; LABA = long acting beta2-agonist; SABA = short acting beta2-agonist

Tiotropium inhalational spray (Spiriva Respimat) has been approved for the treatment of asthma in patients ≥ 6 years of age. Multiple other medications are indicated for the treatment of asthma and information can be found in other class reviews. In the 2019 GINA guidelines, for children 6 to 11 years of age, tiotropium is an option as add-on to high dose ICS in patients requiring 2 or more controllers and an as-needed reliever medication (Step 4).
The antimuscarinic agents, also known as anticholinergic agents, aclidinium (Duaklir Pressair, Tudorza Pressair), ipratropium (Atrovent), revefenacin (Yupelri), tiotropium (Spiriva HandiHaler, Spiriva Respimat, Stiolto Respimat), glycopyrrolate (Bevespi Aerosphere, Lonhala Magnair, Seebri Neohaler, Utibron Neohaler), and umeclidinium (Incruse Ellipta, Anoro Ellipta) antagonize the action of acetylcholine released from the vagus nerve. Inhibition of the muscarinic receptors blocks the cholinergic neurotransmission causing bronchodilation.

Aclidinium, glycopyrrolate, revefenacin, tiotropium, and umeclidinium have similar affinity to the muscarinic receptor subtypes M1 to M5. However, in the airways, they exhibit pharmacological effects through inhibition of M3-receptors at the smooth muscle. This functional selectivity for M3 receptors is due to their ability to dissociate significantly faster from M2 receptors than from M3 receptors, unlike ipratropium. Aclidinium association rate for the M3 receptor was similar to ipratropium and 2.6 times faster than tiotropium.

Roflumilast (Daliresp) and its active metabolite (roflumilast N-oxide) are selective inhibitors of phosphodiesterase 4 (PDE4). This action leads to the accumulation of cyclic adenosine monophosphate (cAMP) in lung tissue. Although, the specific mechanism by which roflumilast exerts its therapeutic action in patients with COPD is not well-defined, it is believed to reduce inflammation by increasing cAMP.

Albuterol is a short-acting beta2-agonist (SABA). The combination of albuterol and ipratropium (Combivent Respimat) enables simultaneous administration to produce greater bronchodilator effect than possible with either drug alone. Both ingredients exert a local effect on the muscarinic and beta2 receptors in the lung.

The combination of an antimuscarinic and LABA works simultaneously to produce bronchodilation. LABAs, such as vilanterol (Anoro Ellipta), olodaterol (Stiolto Respimat), formoterol (Bevespi Aerosphere, Duaklir Pressair), and indacaterol (Utibron Neohaler), selective agonists at beta2 receptors, exert their effects by increasing activity of adenylyl cyclase, an intracellular enzyme responsible for the conversion of adenosine triphosphate (ATP) to cyclic-3',5'-adenosine monophosphate (cAMP) thus producing bronchodilation and a resultant increase in bronchial airflow.
PHARMACOKINETICS

<table>
<thead>
<tr>
<th>Drug</th>
<th>Onset of Action 15% or more increase in FEV$_1$ (hours)</th>
<th>Time to Peak FEV$_1$ (hours)</th>
<th>Duration of Action (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimuscarinics – Short-Acting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipratropium inhalation solution (Atrovent)</td>
<td>0.25–0.5</td>
<td>1–2</td>
<td>4–5; up to 7–8 in some patients</td>
</tr>
<tr>
<td>ipratropium inhalation aerosol MDI (Atrovent HFA)</td>
<td>0.25</td>
<td>1–2</td>
<td>2–4</td>
</tr>
<tr>
<td>Antimuscarinics – Long-Acting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aclidinium bromide inhalation powder (Tudorza Pressair)</td>
<td>0.5</td>
<td>2–3</td>
<td>12</td>
</tr>
<tr>
<td>glycopyrrolate (Lonhala Magnair)</td>
<td>nr</td>
<td>1–2</td>
<td>nr</td>
</tr>
<tr>
<td>glycopyrrolate (Seebri Neohaler)</td>
<td>nr</td>
<td>1–2</td>
<td>nr</td>
</tr>
<tr>
<td>revefenacin (Yupelri)</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>tiotropium inhalation powder (Spiriva HandiHaler)</td>
<td>0.5</td>
<td>1–4</td>
<td>24</td>
</tr>
<tr>
<td>tiotropium inhalation spray (Spiriva Respimat)</td>
<td>nr</td>
<td>nr</td>
<td>24</td>
</tr>
<tr>
<td>Antimuscarinics – Long-Acting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>umeclidinium inhalation powder (Incruse Ellipta)</td>
<td>nr</td>
<td>nr</td>
<td>24</td>
</tr>
<tr>
<td>Antimuscarinic/Beta$_2$-Agonist Combinations – Short-Acting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>albuterol/ipratropium inhalation solution</td>
<td>nr</td>
<td>1.5</td>
<td>4.3–5</td>
</tr>
<tr>
<td>albuterol/ipratropium MDI (Combivent Respimat)</td>
<td>0.25</td>
<td>1</td>
<td>4–5</td>
</tr>
<tr>
<td>Antimuscarinic/Beta$_2$-Agonist Combinations – Long-Acting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aclidinium bromide/formoterol (Duaklir Pressair)</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>glycopyrrolate/formoterol (Bevespi Aerosphere)</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>glycopyrrolate/indacaterol (Utibron Neohaler)</td>
<td>nr</td>
<td>1–4</td>
<td>nr</td>
</tr>
<tr>
<td>tiotropium/olodaterol (Stiolto Respimat)</td>
<td>nr</td>
<td>2</td>
<td>nr</td>
</tr>
<tr>
<td>umeclidinium/vilanterol inhalation powder (Anoro Ellipta)</td>
<td>0.25</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Phosphodiesterate 4 (PDE4) Inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>roflumilast (Daliresp)</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
</tbody>
</table>

nr = not reported

Bronchodilation following inhalation of these agents is a local, site-specific effect. It is important to note that roflumilast (Daliresp) is not a bronchodilator.
Although much of an administered dose of aclidinium (Tudorza Pressair), ipratropium (Atrovent), and tiotropium (Spiriva HandiHaler) is swallowed, since they are quaternary amines, minimal drug absorption from the gastrointestinal (GI) tract is expected. Ipratropium is poorly absorbed from the lungs while tiotropium is highly bioavailable from the lung surface (19.5% absolute bioavailability). Following inhalation of tiotropium solution (Spiriva Respimat), urinary excretion data suggest that approximately 33% of the inhaled dose reaches the systemic circulation. Oral solutions of tiotropium have an absolute bioavailability of 2% to 3% but, given the mode of administration, suggest there should be substantially higher concentrations in the lung.

Fourteen percent of an inhaled dose of tiotropium is excreted unchanged in the urine. Renal impairment is associated with increased tiotropium concentrations after dry powder inhalation. Approximately 25% of an absorbed tiotropium dose is metabolized via the cytochrome P450 system. Inhibitors of CYP450 3A4 or 2D6, such as ketoconazole or quinidine, may impact tiotropium metabolism. The terminal elimination half-life of tiotropium is between 5 and 6 days and, after once daily inhalation by COPD patients, steady state was reached after 2 to 3 weeks.

The absolute bioavailability of aclidinium bromide is approximately 6% in healthy volunteers. It is extensively metabolized, via hydrolysis, with only 1% excreted as unchanged aclidinium. Approximately 54% to 65% of the radioactivity was excreted in urine and 20% to 33% of the dose was excreted in feces. The estimated effective half-life is 5 to 8 hours.

Following twice-daily oral inhalation of aclidinium/formoterol (Duaklir Pressair), the mean maximum concentrations of both components were reached within 5 minutes. Steady state occurred within 5 days.

In vitro and in vivo data showed that revefenacin is rapidly and primarily metabolized via hydrolysis to an active metabolite with activity that is approximately one-third to one-tenth of revefenacin’s but the metabolite plasma exposure is 4- to 6-fold higher than revefenacin. Following inhaled administration, revefenacin and its active metabolite were detected within about 14 to 41 minutes in healthy and COPD patients. Revefenacin is extensively distributed to tissues. Revefenacin reaches steady state within 8 days and has a terminal half-life (parent and active metabolite) of 22 to 70 hours in COPD patients.

The absolute bioavailability of roflumilast following a 500 microgram oral dose is approximately 80%. Plasma protein binding of roflumilast and its N-oxide metabolite is approximately 99% and 97%, respectively. Following an oral dose, the median plasma half-life of roflumilast and its N-oxide metabolite are approximately 17 and 30 hours, respectively. Roflumilast is extensively metabolized via Phase I (cytochrome P450) and Phase II (conjugation) reactions. Steady state plasma concentrations of roflumilast and its N-oxide metabolite are reached after approximately 4 days for roflumilast and 6 days for roflumilast N-oxide following once daily dosing.

In vitro clinical data showed that umeclidinium (Incruse Ellipta) was mostly absorbed from the lung after inhaled doses with minimum contribution from oral absorption. Umeclidinium is primarily metabolized by CYP2D6 and is a P-gp substrate; metabolites have either low or no pharmacological activity. Following oral dosing to healthy male subjects, 92% of the total dose was recovered in feces, and in urine recovery was less than 1% of the total dose. The effective half-life after once-daily inhalation dosing is 11 hours.

Following inhalation of umeclidinium/vilanterol (Anoro Ellipta), maximum concentration is reached in 5 to 15 minutes and is mostly absorbed from the lung with minimum contribution from oral absorption. In vitro data indicates umeclidinium is primarily metabolized by the enzyme cytochrome P450 2D6 (CYP2D6). The primary metabolic routes for umeclidinium are oxidative (hydroxylation, O-dealkylation)
followed by conjugation (e.g., glucuronidation). The metabolites formed have low or no pharmacological activity. Approximately 92% of the drug is excreted via feces with 1% via urine. Metabolism of vilanterol primarily occurs via hepatic CYP3A4 with the metabolites having significantly reduced beta1- and beta2-agonist activity. Both umeclidinium and vilanterol are a substrate for the P-glycoprotein (P-gp) transporter. Following oral administration, vilanterol metabolites are excreted mainly via urine (70%) and feces (30%).

Data on the tiotropium component of tiotropium/olodaterol (Stiolto Respimat) are comparable to those for tiotropium solutions described above. Olodaterol reaches maximum plasma concentrations within 10 to 20 minutes following inhalation, and inhaled bioavailability is 30% (oral bioavailability is negligible). Olodaterol is metabolized by direct glucuronidation, O-demethylation, and conjugation via CYP2C9 and CYP2C8. Metabolites have little to no clinical activity. The half-life of olodaterol is approximately 7.5 hours, with 38% excreted in the urine and 58% in the feces.

Following inhalation, the median time to reach peak plasma concentrations is 5 minutes for glycopyrrolate (Bevespi Aerosphere, Seebri Neohaler, Utibron Neohaler), 15 minutes for indacaterol (Utibron Neohaler), < 20 minutes for glycopyrrolate (Lonhala Magnair), and 20 to 60 minutes for formoterol (Bevespi Aerosphere). Absolute bioavailability of glycopyrrolate and indacaterol are 40% and 43% to 45%, respectively, when inhaled, and both agents have minimal gastrointestinal absorption. Bioavailability is not reported in the prescribing information for glycopyrrolate/formoterol (Bevespi Aerosphere).

Glycopyrrolate (Bevespi Aerosphere, Lonhala Magnair, Seebri Neohaler, Utibron Neohaler) is metabolized via oxidation and hydrolysis by multiple CYP isoenzymes, while indacaterol (Utibron Neohaler) is metabolized by UGT1A1 and CYP3A4. Glycopyrrolate is eliminated primarily renally (60% to 85%) and has a terminal half-life of 33 to 53 hours. Renal clearance plays a very small role in the elimination of indacaterol but plays a role in the clearance of formoterol (62%); 54% of indacaterol is eliminated via the feces. The half-life of indacaterol is 40 to 56 hours. The elimination half-life of glycopyrrolate/formoterol is 11.8 hours.

CONTRAINDICATIONS/WARNINGS

Patients with a history of hypersensitivity to atropine or any of its derivatives (e.g., ipratropium) should not use products containing ipratropium (Atrovent, Combivent Respimat) or tiotropium (Spiriva, Spiriva Respimat, Stiolto Respimat). Immediate hypersensitivity reactions, including angioedema, anaphylaxis, urticaria, rash, bronchospasm, or itching, may occur after administration of aclidinium (Duaklir Pressair, Tudorza Pressair), tiotropium, umeclidinium (Anoro Ellipta, Incruse Ellipta), or roflumilast (Daliresp). If such a reaction occurs, therapy should be stopped at once, and alternative treatments should be considered. Aclidinium and umeclidinium are contraindicated in patients who have a severe hypersensitivity to milk proteins or any other ingredient contained in the product. Patients with a hypersensitivity to the active ingredient(s) or any component of the product should not use glycopyrrolate (Lonhala Magnair), glycopyrrolate/formoterol (Bevespi Aerosphere), or revefenacin (Yupelri).

Aclidinium and tiotropium inhalation powders, aclidinium/formoterol (Duaklir Pressair), glycopyrrolate/formoterol (Bevespi Aerosphere), glycopyrrolate (Lonhala Magnair, Seebri Neohaler), glycopyrrolate/indacaterol (Utibron Neohaler), revefenacin (Yupelri), tiotropium/olodaterol (Stiolto Respimat), umeclidinium (Incruse Ellipta), umeclidinium/vilanterol (Anoro Ellipta), and roflumilast
(Daliresp) are not indicated for the initial treatment of acute episodes of bronchospasm or acute deterioration of COPD (e.g., rescue therapy). Avoid using these agents to relieve sudden breathing problems and avoid taking extra doses.

All LABAs were previously contraindicated and carried a boxed warning in patients with asthma without use of a long-term asthma control medication due to the risk of asthma related death. However, in December 2017, the FDA released a communication based on 4 large clinical safety trials. The FDA determined that treatment of asthma with a LABA in combination with an ICS does not lead to significantly more serious asthma-related adverse effects than treatment with an ICS alone. As a result, the boxed warning regarding asthma-related death was removed from ICS and LABA labeling (including combination products). The boxed warning regarding increase risk of asthma-related death with use of LABAs alone to treat asthma will remain in labels for single component LABAs.

Roflumilast is contraindicated for use in patients with moderate to severe liver impairment (Child-Pugh B or C). Psychiatric adverse events (insomnia, depression, and anxiety) were twice as frequent in patients taking roflumilast in controlled trials as compared to placebo. One completed suicide and 2 suicide attempts were reported in clinical trials; post-marketing has produced reports of suicidal ideation in patients with and without a history of depression and the postmarket RESPOND study reported 1 completed suicide. All patients should be monitored for signs of suicidal ideation. For patients with a history of depression and/or suicidal thoughts or behavior, prescribers should carefully weigh the risks and benefits before use. Moderate (5% to 10% of body weight) and severe (> 10% of body weight) weight loss have been reported with roflumilast therapy. Weight was regained after discontinuation of therapy.

Inhaled medicines may cause paradoxical bronchospasm, which may be life-threatening. If this occurs, treatment with any of these products should be stopped and other alternatives considered.

Aclidinium, glycopyrrolate, ipratropium, revafenacin, tiotropium, and umeclidinium should be used with caution in patients with narrow-angle glaucoma or urinary retention. Patients should consult with a physician immediately if symptoms of prostatic hyperplasia or bladder-neck obstruction occur.

Clinically significant cardiac effects, including electrocardiogram (ECG) effects, may occur with excessive LABA use; do not use at doses higher than recommended. Dose may need to be decreased if these effects occur when using the recommended dose. Similarly, beta-agonists may cause hypokalemia, potentially adding to cardiac concerns. Cardiovascular effects and fatalities have been reported in association with overuse of inhaled sympathomimetic medications. When using these medications other LABAs should not be used.

Sympathomimetic agents, including albuterol and LABAs, should be used cautiously in patients with convulsive disorders, thyrotoxicosis, suspected QT prolongation, and those with known sympathomimetic sensitivity. These agents may also cause hyperglycemia.
Monoamine oxidase (MAO) inhibitors and tricyclic antidepressants should be used cautiously with albuterol-containing products, such as albuterol/ipratropium inhalation solution, and albuterol/ipratropium CFC-free MDI due to the potentiation of cardiovascular effects. A 2-week discontinuation period of the MAO inhibitors and tricyclic antidepressants is suggested prior to initiating therapy with an albuterol-containing product.

Due to their sympathomimetic effects, LABAs should be used cautiously with adrenergic drugs, other sympathomimetic, xanthine derivatives, steroids, MAO inhibitors, tricyclic antidepressants, beta-blockers, and agents that prolong the QT interval. If co-administration is necessary due to lack of an acceptable alternative therapy, a cardioselective beta-blocker could be utilized to limit severe bronchospasm.

Due to the potential for hypokalemia, LABAs should be used cautiously with diuretics, xanthine derivatives, or steroids.

Avoid use of antimuscarinic agents within this class with other antimuscarinic medications.

Coadministration of revefenacin (Yupelri) with OATP1B1 and OATP1B3 inhibitors (e.g., cyclosporine, rifampicin) could lead to an increase in systemic exposure of revefenacin’s active metabolite therefore coadministration is not recommended.

Use with inhibitors of CYP3A4 or dual inhibitors of CYP3A4 and CYP1A2 (e.g., erythromycin, ketoconazole, fluvoxamine, cimetidine) will increase roflumilast (Daliresp) systemic exposure and may result in increased adverse reactions. The risk of such concurrent use should be weighed carefully against benefit.

Caution is advised when considering the co-administration of umecridinium/vilanterol with ketoconazole and other known strong CYP3A4 inhibitors (e.g., ritonavir, clarithromycin, indinavir, itraconazole, lopinavir, nefazodone, nelfinavir, saquinavir, telithromycin, voriconazole) due to increased risk of adverse effects, including cardiovascular (e.g., QT prolongation).

Tiotropium/olodaterol (Stiolto Respimat) and glycopyrrolate/indacaterol (Utibron Neohaler) should be used cautiously with dual inhibitors of CYP and P-glycoprotein (P-gp), but no dose adjustment is needed.

No formal drug interaction studies have been performed with glycopyrrolate/formoterol (Bevespi Aerosphere).
ADVERSE EFFECTS

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dry Mouth</th>
<th>Headache</th>
<th>Nausea / Vomiting</th>
<th>Nervousness</th>
<th>Palpitation / Chest Pain</th>
<th>Tremor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimuscarinics – Short-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipratropium inhalation solution (Atrovent)</td>
<td>3.2</td>
<td>6.4</td>
<td>4.1</td>
<td>0.5</td>
<td>reported</td>
<td>0.9</td>
</tr>
<tr>
<td>ipratropium inhalation aerosol MDI (Atrovent HFA)</td>
<td>2–4</td>
<td>6–7</td>
<td>4</td>
<td>nr</td>
<td>reported</td>
<td>nr</td>
</tr>
<tr>
<td>Antimuscarinics – Long-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aclidinium bromide inhalation powder (Tudorza Pressair)</td>
<td>< 1</td>
<td>6.6</td>
<td>1.1</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>glycopyrrolate (Lonhala Magnair)</td>
<td>nr</td>
<td>≥ 2</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>glycopyrrolate (Seebri Neohaler)</td>
<td>nr</td>
<td>nr</td>
<td>< 1</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>revetefancin (Yupelri)</td>
<td>nr</td>
<td>4</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>tiotropium inhalation powder DPI (Spiriva)</td>
<td>12–16</td>
<td>nr</td>
<td>1–4</td>
<td>nr</td>
<td>5–7</td>
<td>nr</td>
</tr>
<tr>
<td>tiotropium inhalation spray (Spiriva Respimat)</td>
<td>4.1</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>umeclidinium inhalation powder (Incruise Ellipta)</td>
<td>nr</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>Antimuscarinic/Beta₂-Agonist Combinations – Short-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>albuterol/ipratropium inhalation solution</td>
<td>nr</td>
<td>nr</td>
<td>1.4</td>
<td>nr</td>
<td>2.6</td>
<td>nr</td>
</tr>
<tr>
<td>albuterol/ipratropium CFC-free MDI (Combivent Respimat)</td>
<td>< 2</td>
<td>3</td>
<td>< 2</td>
<td>nr</td>
<td>< 2</td>
<td>< 2</td>
</tr>
<tr>
<td>Antimuscarinic/Beta₂-Agonist Combinations – Long-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aclidinium bromide/formoterol (Duaklir Pressair)</td>
<td>1–3</td>
<td>6.3</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>glycopyrrolate/formoterol (Bevespi Aerosphere)</td>
<td>1–2</td>
<td>1–2</td>
<td>1–2</td>
<td>1–2</td>
<td>1–2</td>
<td>reported</td>
</tr>
<tr>
<td>glycopyrrolate/indacaterol (Utibron Neohaler)</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>< 1</td>
<td>nr</td>
<td></td>
</tr>
<tr>
<td>tiotropium/olodaterol (Stiolto Respimat)</td>
<td>reported</td>
<td>nr</td>
<td>nr</td>
<td>reported</td>
<td>nr</td>
<td></td>
</tr>
<tr>
<td>umeclidinium/vilanterol inhalation powder DPI (Anoro Ellipta)</td>
<td>< 1</td>
<td>nr</td>
<td>< 1</td>
<td>nr</td>
<td>1</td>
<td>nr</td>
</tr>
<tr>
<td>Phosphodiesterate 4 (PDE4) Inhibitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>roflumilast (Daliresp)</td>
<td>nr</td>
<td>4.4</td>
<td>4.7</td>
<td>nr</td>
<td>reported</td>
<td>1–2</td>
</tr>
</tbody>
</table>

Adverse effects are reported as a percentage. Adverse effects data are obtained from package inserts and are not meant to be comparative or all-inclusive. nr = not reported.
Common adverse reactions associated with aclidinium, when compared to placebo, include nasopharyngitis (5.5%), cough (3%), and dry mouth (< 1%).

The most common adverse effects with an incidence ≥ 1% for glycopyrrolate (Seebri Neohaler) include upper respiratory tract infections, urinary tract infections, oropharyngeal pain, nasopharyngitis, and sinusitis. Additionally, dysphonia was reported as an adverse event in post-marketing studies.

The most common adverse effects with an incidence ≥ 2% for glycopyrrolate (Lonhala Magnair) include dyspnea and urinary tract infections.

The most common adverse event reported with tiotropium was dry mouth (16%). Additionally, use of tiotropium inhalation spray (Spiriva Respimat) has been associated with pharyngitis, cough, and sinusitis. Other reports of adverse events with tiotropium are consistent with anticholinergic effects, including constipation (4%) and blurred vision.

In a single trial that enrolled 198 COPD patients, the number of patients with changes from baseline-corrected QT interval of 30 to 60 msec was higher in the tiotropium-treated group (range, 16% to 20%) as compared to the placebo group (range, 1% to 12%) depending on QT correction method used. Other clinical studies did not detect a drug effect on QTc intervals.

In 2008, the FDA issued a MedWatch related to the potential for tiotropium to increase the risk of stroke in patients. However, in 2010, the FDA completed its review and issued a statement that the available data did not support the association between tiotropium use and an increase risk for stroke, myocardial infarction, or death from a cardiovascular event.

Common adverse events (incidence ≥ 2% and more common than placebo) associated with the use of umeclidinium (Incruse Ellipta) include nasopharyngitis, upper respiratory tract infection, cough, and arthralgia. Additional postmarketing adverse events include eye pain, glaucoma, blurred vision, and urinary retention.

The most common adverse reactions (incidence ≥ 2%) reported in clinical trials of revefenacin (Yupelri) were cough (4% versus 4% with placebo), nasopharyngitis (4% versus 2% with placebo), upper respiratory tract infection (3% versus 2% with placebo), headache (4% versus 3% with placebo) and back pain (2% versus 1% with placebo).

Other common adverse reactions reported with aclidinium/formoterol (Duaklir Pressair) and at higher rates than placebo, respectively, were upper respiratory tract infection (8.9% and 6.3%) and back pain (3.8% and 3.4%)

Additional adverse effects reported with glycopyrrolate/indacaterol (Utibron Neohaler) include hypertension, back pain and dysphonia.

The most common adverse reactions reported in ≥ 3% of patients using tiotropium/olodaterol (Stiolto Respimat) in clinical trials were nasopharyngitis, cough, and back pain.

The most common adverse reactions occurring in more than 1% of umeclidinium/vilanterol (Anoro Ellipta) patients were pharyngitis (2%), diarrhea (2%), and extremity pain (2%). Sinusitis, constipation, lower respiratory tract infection, muscle spasms, neck pain, and dysphonia have also been reported. Paradoxical bronchospasm caused by umeclidinium/vilanterol is a rare, but life-threatening event, reported in post-marketing studies.
The 2 most common adverse events reported with roflumilast (Daliresp) were diarrhea (9.5%) and weight loss (7.5%).

SPECIAL POPULATIONS

Pediatrics

COPD is a disease that does not normally occur in children. Safety and effectiveness of ipratropium (Atrovent), albuterol/ipratropium inhalation solution, albuterol/ipratropium CFC-free MDI (Combivent Respimat), aclidinium DPI (Tudorza Pressair), aclidinium/formoterol (Duaklir Pressair), glycopyrrolate (Lonhala Magnair, Seebri Neohaler), glycopyrrolate/formoterol (Bevespi Aerosphere), glycopyrrolate/indacaterol (Utibron Neohaler), revefenacin (Yupelri), roflumilast (Daliresp), tiotropium (Spiriva HandiHaler), tiotropium/olodaterol (Stiolto Respimat), umclidinium (Incruse Ellipta), and umclidinium/vilanterol (Anoro Ellipta) in pediatric patients have not been established.

The efficacy of tiotropium inhalational spray (Spiriva Respimat) has not been demonstrated in patients < 18 years old with COPD; however, efficacy in patients ≥ 6 years of age has been established in patients with asthma.

Geriatrics

Dose adjustments are not required in geriatric patients.

Pregnancy

Ipratropium is Pregnancy Category B. Albuterol, albuterol/ipratropium CFC-free MDI, albuterol/ipratropium inhalation solution, glycopyrrolate (Seebri Neohaler), glycopyrrolate/formoterol, glycopyrrolate/indacaterol, and umclidinium/vilanterol are Pregnancy Category C. Previously a Pregnancy Category C product, roflumilast labeling has been updated to comply with Pregnancy and Lactation Labeling Rule (PLLR) and instructs that there are no randomized clinical trials of the product in pregnant women. Labeling for tiotropium (Spiriva, Spiriva Respimat), tiotropium/olodaterol (Stiolto Respimat), and umclidinium (Incruse Ellipta) were also revised to comply with the PLLR and state that data are insufficient to inform of drug-associated risks if used during pregnancy. Also, in compliance with the PLLR, the labeling for aclidinium bromide (Tudorza Pressair), aclidinium/formoterol (Duaklir Pressair), and glycopyrrolate (Lonhala Magnair) does not include a pregnancy category, but rather, states there are no adequate and well-controlled studies in pregnant women.

Hepatic Impairment

The pharmacokinetics of ipratropium have not been studied in patients with hepatic insufficiency.

No dosage adjustment of aclidinium (Tudorza Pressair) is needed for patients with hepatic impairment.

No dose adjustment of tiotropium/olodaterol is required in patients with mild to moderate hepatic impairment, but this agent has not been studied in severe hepatic impairment.

Umeclidinium (Incruse Ellipta) showed no relevant increases in exposure in patients with moderate hepatic impairment. No dosage adjustment of umclidinium/vilanterol (Anoro Ellipta) is required for patients with moderate hepatic impairment.
No dose adjustment of glycopyrrolate or glycopyrrolate/indacaterol is required in patients with mild to moderate hepatic impairment. Neither agent has been studied in severe hepatic impairment.

No formal studies of aclidinium/formoterol (Duaklir Pressair) have been performed in patients with hepatic impairment. The need for dosage adjustment in this population is not anticipated based on available data for aclidinium and formoterol.

No formal studies of glycopyrrolate/formoterol have been conducted in patients with hepatic failure. However, formoterol is primarily cleared by hepatic metabolism and impairment might lead to accumulation of formoterol. Monitoring is recommended.

Roflumilast is not recommended for use in patients with moderate to severe hepatic impairment.

The safety of revefenacin in mild to severe hepatic impairment has not been evaluated. It is not recommended for use in patients with any degree of hepatic impairment.

RENAL IMPAIRMENT

The pharmacokinetics of ipratropium have not been studied in patients with renal insufficiency.

No dosage adjustment of aclidinium (Tudorza Pressair) is needed for patients with renal impairment.

Since tiotropium is predominantly renally excreted, renal impairment was associated with increased plasma drug concentrations and reduced drug clearance. Patients with moderate to severe renal impairment (creatinine clearance [CrCl] of ≤ 50 mL/min or < 60 mL/min for tiotropium solution) should be monitored closely for anticholinergic side effects when treated with tiotropium or tiotropium-containing products.

No dose adjustment of umeclidinium (Incruse Ellipta) or umeclidinium/vilanterol (Anoro Ellipta) is required in patients with renal impairment.

No dose adjustment of glycopyrrolate or glycopyrrolate/indacaterol is required in patients with mild to moderate renal impairment. Use of these agents in severe renal impairment should only be when the benefits clearly outweigh the risks of increased exposure.

No formal studies of aclidinium/formoterol (Duaklir Pressair) have been performed in patients with renal impairment. The need for dosage adjustment in this population is not anticipated based on available data for aclidinium and formoterol.

No formal studies of glycopyrrolate/formoterol have been conducted in patients with renal failure. In patients with severe renal impairment (CrCl ≤ 30 mL/min/1.73 m²) or end-stage renal disease requiring dialysis, the medication should be used only when benefits outweigh the risk.

No dosage adjustment of roflumilast is necessary in patients with renal impairment.

No dose adjustment of revefenacin (Yupelri) is required in patients with renal impairment, however, patients with severe renal impairment should be monitored for systemic antimuscarinic side effects.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Adult Dose</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimuscarinics – Short-Acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipratropium bromide inhalation solution (Atrovent)</td>
<td>2.5 mL 3 to 4 times daily</td>
<td>500 mcg per 2.5 mL (0.02%)</td>
</tr>
<tr>
<td>ipratropium inhalation aerosol MDI (Atrovent HFA)</td>
<td>2 inhalations 4 times daily (do not exceed 12 inhalations in 24 hours)</td>
<td>17 mcg per actuation; 200 inhalations per package</td>
</tr>
<tr>
<td>Antimuscarinics – Long-Acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aclidinium bromide inhalation powder DPI (Tudorza Pressair)</td>
<td>1 inhalation twice daily</td>
<td>400 mcg per actuation; 30 and 60 actuations/package Breath activated device</td>
</tr>
<tr>
<td>glycopyrrolate inhalation solution (Lonhala Magnair)</td>
<td>1 mL twice daily</td>
<td>25 mcg per 1 mL starter kit containing 60 unit-dose vials and 1 Magnair nebulizer or refill kit containing 60 unit-dose vials and a Magnair handset refill</td>
</tr>
<tr>
<td>glycopyrrolate inhalation powder DPI (Seebri Neohaler)</td>
<td>1 inhalation twice daily</td>
<td>15.6 mcg per capsule; 60 capsules/package Breath activated device</td>
</tr>
<tr>
<td>revefenacin inhalation solution (Yupelri)</td>
<td>3 mL once daily via nebulizer</td>
<td>175 mcg per 3 mL unit-dose vial</td>
</tr>
<tr>
<td>tiotropium inhalation powder DPI (Spiriva HandiHaler)</td>
<td>1 inhalation daily (do not swallow capsules)</td>
<td>18 mcg per capsule; 30 or 90 capsules/package Breath activated device</td>
</tr>
<tr>
<td>tiotropium inhalation spray ISI (Spiriva Respimat)</td>
<td>COPD: 2 inhalations of 2.5 mcg/actuation once daily Asthma (adults and children ≥ 6 years old): 2 inhalations of 1.25 mcg/actuation once daily (maximum benefits may take up to 4 to 8 weeks)</td>
<td>1.25, 2.5 mcg tiotropium per actuation; 60 actuations per package</td>
</tr>
<tr>
<td>umeclidinium inhalation powder DPI (Incruse Ellipta)</td>
<td>1 inhalation once daily</td>
<td>62.5 mcg per actuation; 30 actuations/package Breath activated device</td>
</tr>
<tr>
<td>Antimuscarinic/Beta2-Agonist Combination – Short-Acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>albuterol sulfate /ipratropium bromide inhalation solution</td>
<td>3 mL 4 times daily (up to 2 additional 3 mL doses per day)</td>
<td>3 mg/0.5 mg per 3 mL</td>
</tr>
<tr>
<td>albuterol/ipratropium bromide MDI CFC-free (Combivent Respimat)</td>
<td>1 inhalation (spray) 4 times daily (do not exceed 6 inhalations in 24 hours)</td>
<td>100/20 mcg per actuation; 120 actuations/package</td>
</tr>
<tr>
<td>Antimuscarinic/Beta2-Agonist Combination – Long-Acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aclidinium bromide/formoterol DPI (Duaklir Pressair)</td>
<td>1 inhalation twice daily</td>
<td>400/12 mcg per actuation; 30 and 60 actuations/package Breath activated device</td>
</tr>
<tr>
<td>glycopyrrolate/formoterol inhalation aerosol MDI (Bevespi Aerosphere)</td>
<td>2 inhalations twice daily</td>
<td>9/4.8 mcg per actuation; 28 and 120 actuations/canister</td>
</tr>
<tr>
<td>glycopyrrolate/indacaterol inhalation powder DPI (Utibron Neohaler)</td>
<td>1 inhalation twice daily</td>
<td>15.6/27.5 mcg per capsule; 60 capsules/package Breath activated device</td>
</tr>
</tbody>
</table>

CFC=chlorofluorocarbon; DPI=dry powder inhaler; HFA=hydrofluoralkane; ISI=inhalation spray inhaler; MDI=metered-dose inhaler
Dosages (continued)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adult Dose</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimuscarinic/Beta<sub>2</sub>-Agonist Combination – Long-Acting continued</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tiotropium/olodaterol inhalation spray ISI (Stiolto Respimat)</td>
<td>2 inhalations once daily</td>
<td>2.5/2.5 mcg per actuation; 60 actuations/package</td>
</tr>
<tr>
<td>umeclidinium/vilanterol inhalation powder DPI (Anoro Ellipta)</td>
<td>1 inhalation daily (administered at the same time every day)</td>
<td>62.5 mg umeclidinium and 25 mcg vilanterol capsules; 30 capsules each of umeclidinium and vilanterol per package (1 capsule of each provides 1 dose) Breath activated device</td>
</tr>
</tbody>
</table>

Phosphodiesterase 4 (PDE4) Inhibitors

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adult Dose</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>roflumilast (Daliresp)</td>
<td>1 tablet (500 micrograms) daily, with or without food</td>
<td>Oral tablets: 250 mcg, 500 mcg</td>
</tr>
<tr>
<td></td>
<td>May initiate with 250 mcg once daily for 4 weeks, then increase to 500 mcg once daily thereafter, to reduce the rate of treatment discontinuation in some patients; 250 mcg is not an effective therapeutic dose</td>
<td></td>
</tr>
</tbody>
</table>

CFC=chlorofluorocarbon; DPI=dry powder inhaler; HFA=hydrofluoralkane; ISI=inhalation spray inhaler; MDI=metered-dose inhaler

Proper use of dry powder inhalers (DPIs) require the patient to perform rapid, deep inhalation, while metered-dose inhalers (MDIs) require hand-breath coordination. Inhalation spray inhalers (ISIs) do not depend on the strength of inhalation for proper drug delivery to the lungs.

The inhalation powders for glycopyrrolate (Seebri Neohaler), glycopyrrolate/indacaterol (Utibron Neohaler), and tiotropium (Spiriva HandiHaler), are dispensed as capsules in a blister pack. The capsule placed into the respective Neohaler or HandiHaler device, which pierces the capsule to allow for the powder to be delivered upon oral inhalation. The inhalation powder capsules should only be used with the respective Neohaler or HandiHaler devices and must not be swallowed.

The solution for inhalation for glycopyrrolate (Lonhala Magnair), is available as a unit-dose, single-use 1 mL vial (each vial contains 25 mcg of glycopyrrolate) in either a Starter Kit, which contains 60 unit-dose vials and 1 Magnair nebulizer system, or a Refill Kit, which contains 60 unit-dose vials and a Magnair handset refill (contains only medication cap, handset body, mouthpiece, and aerosol head). For the maintenance treatment of COPD, the recommended dose is inhalation of the contents of 1 vial twice daily using the Magnair nebulizer system. Each treatment should take approximately 2 to 3 minutes.

The solution for inhalation for revefenacin (Yupelri) is available as a unit-dose vial and should only be removed from the foil pouch and opened immediately prior to use. It should not be mixed with other drugs in the nebulizer as the compatibility, efficacy, and safety of revefenacin have not been established when used with other drugs in the nebulizer.
CLINICAL TRIALS

Search Strategy

Articles were identified through searches performed on PubMed and review of information sent by manufacturers. Search strategy included the FDA-approved use of all drugs in this class. Randomized, controlled, comparative trials are considered the most relevant in this category. Studies included for analysis in the review were published in English, performed with human participants, and randomly allocated participants to comparison groups. In addition, studies must contain clearly stated, predetermined outcome measure(s) of known or probable clinical importance, use data analysis techniques consistent with the study question, and include follow-up (endpoint assessment) of at least 80% of participants entering the investigation. Despite some inherent bias found in all studies including those sponsored and/or funded by pharmaceutical manufacturers, the studies in this therapeutic class review were determined to have results or conclusions that do not suggest systematic error in their experimental study design. While the potential influence of manufacturer sponsorship and/or funding must be considered, the studies in this review have also been evaluated for validity and importance.

COPD

aclidinium DPI (Tudorza Pressair) versus placebo

Three randomized, double-blind, placebo-controlled trials, compared aclidinium dry powder for inhalation 400 mcg or 200 mcg twice daily and placebo in patients (n=1,919) with stable, moderate to severe COPD. Two trials were 12 weeks in duration and one was 24 weeks. The primary efficacy endpoint was change from baseline in morning trough FEV₁ at study’s end. Other efficacy variables included peak FEV₁ and St. George’s Respiratory Questionnaire (SGRQ), rescue medication usage, and COPD exacerbations. The SGRQ measures the impact on overall health, daily life, and perceived well-being in patients with obstructive airways disease. It is also designed with a responder rate threshold of an improved score of 4 or more. The effect size for aclidinium 400 mcg ranged from 72 mL to 124 mL across the 3 trials at Week 12, and the treatment effect persisted at Week 24 (p<0.001 for all trials). Aclidinium 200 mcg also demonstrated a statistically significant difference in spirometry from placebo, although the magnitude of the treatment difference (51 to 86 mL) was smaller than the effect size observed for the 400 mcg dose. In addition, lack of efficacy was cited more frequently as a reason for discontinuation in the placebo and aclidinium 200 mcg arms compared to aclidinium 400 mcg. Greater decreases in total SGRQ scores were observed for aclidinium compared to placebo (p<0.001). Six- and 12-month extension studies suggested a decrease in rate of exacerbations with aclidinium. Results from the 6-month study were less consistent, although this variability may be due in part to a low background rate of exacerbations overall. Use of daily rescue medication changed by as much as -1.2 puffs/day in the aclidinium 400 mcg arm, compared to -0.3 puffs/day in the placebo group. The 200 mcg dosage was not FDA approved.

In a phase 3 efficacy and safety trial (ACCORD I), 561 patients were randomized (1:1:1) to twice daily aclidinium 200 mcg, 400 mcg, or placebo. Primary endpoint was change from baseline in trough FEV₁; secondary endpoint was peak FEV₁. Both were measured at Week 12. Additional factors evaluated included the St. George’s Respiratory Questionnaire (SGRQ) for health status, twice daily COPD symptoms assessment (assessed via the Transitional Dyspnea Index [TDI]), and safety. Both aclidinium arms showed a statistically significant improvement in trough FEV₁ over the baseline of 1.36 + 0.54 L.
The magnitude of improvement with the 200 mcg dose arm was 86 mL (95% confidence interval [CI], 45 to 127) and 124 mL (95% CI, 83 to 164) in the 400 mcg dose arm (p≤0.0001 for both). Peak FEV₁ demonstrated 146 mL (95% CI, 101 to 190) and 192 mL (95% CI, 148 to 236) improvements in the 200 mcg and 400 mcg arms, respectively (p≤0.001 for both). Aclidinium improved SGRQ, TDI, and COPD symptom scores over placebo in both arms (p<0.05). Adverse events were similar across all groups; dry mouth and constipation (both less than 2%) were the most commonly reported. Both aclidinium 200 mcg and 400 mcg demonstrated improved efficacy over placebo with similar adverse event profiles.

aclidinium DPI (Tudorza Pressair) versus placebo on cardiovascular outcomes

In the ASCENT randomized, double-blind, placebo-controlled trial patients were evaluated over 36 months for the long-term cardiovascular safety in addition to exacerbations (n=3,630). The trial compared aclidinium (n=1,791) versus placebo (n=1,798). The primary endpoints were the time to first occurrence of a major adverse cardiovascular event (MACE) and the rate of moderate to severe exacerbations during the first year of treatment. Of the patients on aclidinium, 3.9% were reported with at least one MACE compared to 4.2% in the placebo group. The incidence rate of MACE resulted in 2.4 per 100 patient years on aclidinium compared to 2.8 per 100 patient years on placebo (HR, 0.89 [95% CI, 0.64 to 1.23]. There was a 17% reduction in the rate of moderate to severe exacerbations on aclidinium compared to placebo (rate ratio [RR], 0.83 [95% CI, 0.73 to 0.94]; p=0.003). There was a 28% reduction in the rate of hospitalizations due to COPD exacerbation for aclidinium compared to placebo (RR, 0.72 [95% CI, 0.55 to 0.99], p=0.02).

albuterol MDI (Proventil, Ventolin) + ipratropium MDI (Atrovent) versus formoterol DPI (Foradil) + ipratropium MDI (Atrovent)

A large, randomized, double-blind, double-dummy, 2-period crossover study of 172 patients with COPD investigated the effects of the addition of either formoterol or albuterol to ipratropium in patients whose symptoms were not optimally controlled by ipratropium alone. In addition to ipratropium MDI 40 mcg 4 times daily, patients received, in random order, formoterol DPI 12 mcg twice daily for 3 weeks followed by albuterol MDI 200 mcg 4 times daily for 3 weeks, or vice versa. Morning peak expiratory flow rate (PEFR) and FEV₁ were significantly better with the formoterol-ipratropium combination than with the albuterol-ipratropium combination (p=0.0003 and p<0.0001 for PEFR and FEV₁, respectively). Similar findings were noted for FVC. On average, all mean individual symptom scores were lower for patients receiving the formoterol-ipratropium combination than for those receiving the albuterol-ipratropium combination (p=0.0042). There were no significant differences between the formoterol and albuterol groups in mean percentage of days with no rescue drug (72.3% and 68.8%, respectively), the number of patients with no COPD exacerbations (34.6% and 30.8%, respectively), or the percentage of patients experiencing “bad days” during the trial (65% and 69%, respectively).

aclidinium/formoterol (Duaklir Pressair) versus aclidinium (Tudorza Pressair) versus formoterol fumarate inhalation versus tiotropium (Spiriva)

The AMPLIFY (NTCT02796677) trial was a 24-week, randomized, parallel-group, double-blind, double-dummy, active-controlled that compared aclidinium/formoterol 12/400 mcg twice daily to aclidinium 400 mcg twice daily, formoterol fumarate 12 mcg twice daily, and tiotropium 18 mcg once daily in patients with stable, moderate-to-severe COPD. The fixed-dose combination product resulted in significantly greater improvements in 1-hour post-dose FEV₁ compared with aclidinium (84 mL; p<0.0001), formoterol fumarate (84 mL; p<0.0001), and tiotropium (92 mL; p<0.0001). Significantly
greater improvements in change from baseline in trough FEV\textsubscript{1} for the combination compared to formoterol fumarate (55 mL; p<0.001) was also seen; however, the improvements for the combination product compared with aclidinium (14 mL) and tiotropium (19 mL) were not statistically significant. Two additional studies (NCT01492942, NCT01437397) comparing fixed-dose aclidinium/formoterol with aclidinium and with formoterol fumarate reported similar findings in the differences in change in 1-hour post-dose FEV\textsubscript{1} and trough FEV\textsubscript{1}.177

glycopyrrolate/formoterol (Bevespi Aerosphere) versus placebo

The safety and efficacy of glycopyrrolate/formoterol were assessed in 2 placebo-controlled lung function trials of 24 weeks.178 Trial 1 and Trial 2, 24 week, randomized, double-blind, placebo-controlled, parallel-group confirmatory trials, were conducted in patients with moderate to very severe COPD (n=3,699; ages 40 to 80 years old; history of smoking ≥ 10 pack-years; post-albuterol FEV\textsubscript{1} < 80% of predicted normal values; FEV\textsubscript{1}/FVC ratio < 0.7).179 Trial 1 and Trial 2 evaluated glycopyrrolate/formoterol 18 mcg/9.6 mcg, glycopyrrolate 18 mcg, formoterol 9.6 mcg, and placebo twice daily. Trial 1 also had an open-label active control. In both trials glycopyrrolate/formoterol showed a larger increase in mean change from baseline in trough FEV\textsubscript{1} at week 24 compared to placebo (150 mL and 103 mL, respectively), glycopyrrolate (59 mL and 54 mL, respectively), and formoterol (64 mL and 56 mL, respectively), the primary endpoint. In Trial 1 and Trial 2, the mean peak FEV\textsubscript{1} improvement from baseline compared to placebo at week 24 was 291 mL (95% CI, 252 to 331) and 267 mL (95% CI, 226 to 308), respectively. Glycopyrrolate/formoterol also showed an onset of bronchodilatory effect at 5 minutes after the first dose based on a mean increase in FEV\textsubscript{1} compared to placebo in both trials. In Trial 1, the SGRQ responder rate (defined as an improvement in score of ≥ 4) was 37%, 30%, 35%, and 28% for glycopyrrolate/formoterol, glycopyrrolate, formoterol, and placebo, respectively, with odds ratios of 1.4 (95% CI, 1.1 to 1.8), 1.1 (95% CI, 0.9 to 1.5), and 1.5 (95% CI, 1.1 to 2.1) for glycopyrrolate/formoterol versus glycopyrrolate, glycopyrrolate/formoterol versus formoterol, and glycopyrrolate/formoterol versus placebo, respectively. Trends were similar in Trial 2 with odds ratios of 1.2 (95% CI, 0.9 to 1.6), 1.3 (95% CI, 1.9 to 1.7), and 1.3 (95% CI, 0.9 to 1.8) for glycopyrrolate/formoterol versus glycopyrrolate, glycopyrrolate/formoterol versus formoterol, and glycopyrrolate/formoterol versus placebo, respectively. Consistent improvements were also observed in trough FEV\textsubscript{1} with respect to age, gender, degree of airflow limitation, GOLD stage, smoking status, or inhaled corticosteroid (ICS). Decreased use of daily rescue albuterol with glycopyrrolate/formoterol was observed in both trials compared to placebo. Safety and efficacy was confirmed at 52 weeks in long-term trials.180

glycopyrrolate/formoterol (Bevespi Aerosphere) versus umedlidinium/vilanterol (Anoro Ellipta)

In a double-blind, double-dummy, 24-week study, patients with COPD received glycopyrrolate 18 mcg/formoterol 9.6 mcg MDI 2 inhalations per dose, twice-daily (n = 559) or umedlidinium 62.5 mcg/vilanterol 25 μg DPI one inhalation, once-daily (n = 560).181,182 Primary endpoints were change from baseline in morning pre-dose trough FEV\textsubscript{1} and peak change from baseline in FEV\textsubscript{1} within 2 hours post-dose. Glycopyrrolate/formoterol was non-inferior to umedlidinium/vilanterol for peak FEV\textsubscript{1} (LMS difference of -3.4 mL, 97.5% CI, -32.8 to 25.9) but not for trough FEV\textsubscript{1} (LMS difference of -87.2 mL; 95% CI, -117 to -57.4). Glycopyrrolate/formoterol was nominally superior to umedlidinium/vilanterol for onset of action (p < 0.0001). Exacerbation and safety measures were similar between the treatments.
glycopyrrolate (Lonhala Magnair) versus placebo

Approval of glycopyrrolate (Lonhala Magnair) is based on the GOLDEN (Glycopyrrolate for Obstructive Lung Disease via Electronic Nebulizer) trials, which included 2 dose-ranging studies (n=378), two 12-week placebo-controlled confirmatory studies (n=1,294), and one 48 week safety study. GOLDEN-3 and GOLDEN-4 were phase 3, randomized, double-blinded, placebo-controlled, confirmatory trials in patients with moderate to very severe COPD. Patients were randomized to receive glycopyrrolate 25 mcg, 50 mcg, or placebo twice daily. The primary endpoint was the change from baseline in trough FEV₁ at 12 weeks compared with placebo. Patients receiving glycopyrrolate 25 mcg or 50 mcg twice daily had statistically significant changes from baseline in trough FEV₁, as compared with placebo (GOLDEN-3: 0.105 L and 0.126 L [25 and 50 mcg glycopyrrolate, respectively]; p ≤ 0.0001; GOLDEN-4: 0.084 L and 0.082 L [25 and 50 mcg glycopyrrolate, respectively]; p ≤ 0.0001). There was not a sufficient increase in benefit seen to support use of the 50 mcg dose over the 25 mcg dose.

glycopyrrolate (Seebri Neohaler) versus placebo

Safety and efficacy of glycopyrrolate were evaluated in 2 dose ranging, four 12-week, placebo-controlled trials (2 of which were to support the approval of glycopyrrolate/indacaterol fixed dose combination; GEM1 and GEM2), and a 52-week safety trial. Efficacy of glycopyrrolate is based on these 2 dose ranging trials of 471 COPD patients and 2 placebo-controlled confirmatory trials in 867 COPD patients. Two of the 12-week, randomized, double-blind, placebo-controlled, parallel group confirmatory trials evaluated the efficacy of glycopyrrolate on lung function in 867 COPD patients. The primary endpoint was to evaluate change from baseline in FEV₁ AUC(0-12h) after the day 85 morning dose of the 15.6 mcg twice daily dose versus placebo. Both trials demonstrated a greater increase in least squares mean change from baseline in FEV₁ AUC(0-12h) versus placebo (Trial 1: difference, 0.139 L; 95% CI, 0.095 to 0.184; and Trial 2: difference, 0.123 L; 95% CI, 0.081 to 0.165). The SGRQ was assessed in Trials 1 and 2. In Trial 1, the responder rate for the glycopyrrolate treatment arm was 49% compared to 41% for placebo (odds ratio [OR], 1.43; 95% CI, 0.95 to 2.15). In Trial 2, the SGRQ responder rate for the glycopyrrolate treatment arm was 55% compared to 42% for placebo (OD, 1.78; 95% CI, 1.17 to 2.71).

glycopyrrolate/indacaterol (Utibron Neohaler) versus placebo

The safety and efficacy of glycopyrrolate/indacaterol were evaluated in 2 placebo-controlled confirmatory trials (FLIGHT1 and FLIGHT2), and a 12-month long-term safety trial in COPD patients (n=615). The efficacy is based on the dose ranging trials which included 562 COPD or asthma patients and the confirmatory trials of 2,038 patients. In the confirmatory trials, the active-controls in these trials were the individual components of the product, indacaterol 27.5 mcg twice daily and glycopyrrolate twice daily, and were included to approximate the contribution each product makes in improved FEV₁. The primary endpoint of the 12-week, randomized, double-blind, placebo- and active-controlled, parallel group confirmatory trials was the least squares mean change from baseline in FEV₁ AUC(0-12h) following the morning dose of glycopyrrolate/indacaterol (27.5/15.6 mcg) at day 85 compared to placebo. The combination therapy of glycopyrrolate/indacaterol demonstrated a larger increase in mean change from baseline in FEV₁ AUC(0-12h) versus placebo (Trial 1 [n=996]: difference, 0.262 L; 95% CI, 0.224 to 0.3; and Trial 2 [n=1,039]: difference, 0.231 L; 95% CI, 0.192 to 0.271). The combination therapy of glycopyrrolate/indacaterol demonstrated a larger increase in mean change from baseline in FEV₁ AUC(0-12h) versus indacaterol (Trial 1: difference, 0.112 L; 95% CI, 0.075 to 0.149; and Trial 2: difference, 0.094 L; 95% CI, 0.055 to 0.133) and glycopyrrolate (Trial 1: difference, 0.079 L; 95% CI, 0.042
to 0.116; and Trial 2: difference, 0.098 L; 95% CI, 0.059 to 0.137). In both trials, patients used less daily rescue medication (albuterol) compared to patients receiving placebo. In Trial 1, improvement in SGRQ score was higher with glycopyrrolate/indacaterol than with comparators: odds ratios [OR] of 1.4 (95% CI, 1 to 2), 1.1 (95% CI, 0.8 to 1.7), and 2.9 (95% CI, 1.9 to 4.2), for glycopyrrolate/indacaterol versus glycopyrrolate, glycopyrrolate/indacaterol versus indacaterol, and glycopyrrolate/indacaterol versus placebo, respectively. In Trial 2, the SGRQ responder rate was 57%, 46%, 48%, and 39%, for glycopyrrolate/indacaterol, glycopyrrolate, indacaterol, and placebo, respectively, with ORs for glycopyrrolate/indacaterol versus glycopyrrolate of 1.6 (95% CI, 1.1 to 2.3), glycopyrrolate/indacaterol versus indacaterol of 1.5 (95% CI, 1.1 to 2.2), and glycopyrrolate/indacaterol versus placebo of 2.2 (95% CI, 1.5 to 3.2), respectively.

glycopyrrolate/indacaterol (Utibron Neohaler) versus umeclidinium/vilanterol (Anoro Ellipta)

Two replicate, randomized, double-blind, double-dummy, active-controlled, crossover studies compared the efficacy of glycopyrrolate/indacaterol to umeclidinium/vilanterol in patients with moderate to severe COPD (n=357 in study 1 and n=355 in study 2). Patients were randomized 1:1 to sequential treatments of glycopyrrolate/indacaterol 27.5/15.6 mcg twice daily or umeclidinium/vilanterol 62.5/25 mcg once daily for 12 weeks each, separated by a 3-week washout period. The primary outcome was noninferiority of glycopyrrolate/indacaterol based on 24 hour FEV1 at week 12 (FEV1 AUC\(_{24h}\)), and noninferiority was defined as a lower bound margin of the confidence interval of -20 mL. At week 12, the FEV1 AUC\(_{24h}\) was 232 mL and 244 mL for glycopyrrolate/indacaterol and umeclidinium/vilanterol, respectively, in study 1 and 185 mL and 203 mL for glycopyrrolate/indacaterol and umeclidinium/vilanterol, respectively, in study 2. In both studies, indacaterol did not meet noninferiority, as the lower bound was -26.9 mL in study 1 and -34.2 in study 2. Despite this lack of statistical noninferiority, the authors concluded that the potential between-group difference was not clinically significant. This study was funded by Sunovion/Novartis.

revefenacin (Yupelri) versus placebo

The safety and efficacy of revefenacin were evaluated in two 12-week, double-blind, placebo-controlled, randomized, parallel-group clinical trials (Trial 1 [NCT02459080], n=619; Trial 2 [NCT02512510], n=645) in patients with moderate to severe COPD. Patients were randomized to 88 mcg or 175 mcg of revefenacin or to placebo administered once daily via a standard jet nebulizer (PARI LC\(^{®}\) Sprint Reusable Nebulizer). The primary endpoint in both trials was the change from baseline in predose, or trough, FEV1 at day 85, following 12 weeks of therapy, in the intent-to-treat (ITT) population. In Trial 1, the least squares mean change in baseline trough FEV1 was -19 mL in the placebo group compared to 127 mL in the 175 mcg revefenacin group (difference, 146 mL; 95% CI, 103.7 to 188.8). In Trial 2, the least squares mean change in baseline trough FEV1 was -45 mL in the placebo group compared to 102 mL in the 175 mcg revefenacin group (difference, 147 mL; 95% CI, 97 to 197.1). Improvement in mean peak FEV1, defined as the highest post-dose FEV1 within the first 2 hours after dosing, on day 1 relative to placebo was 133 mL and 129 mL in Trials 1 and 2, respectively. The SGRQ responder rate (defined as a score improvement ≥ 4) for the 175 mcg treatment group on day 85 was 49% versus 34% with placebo (odds ratio [OR], 2.11; 95% CI, 1.14 to 3.92) in Trial 1 and 45% versus 39%, respectively (OR, 1.31; 95% CI, 0.72 to 2.38) in Trial 2. As only the 175 mcg dose is FDA-approved, available results focus on results with this dose.
roflumilast (Daliresp) versus placebo

Multiple clinical trials comparing roflumilast to placebo have demonstrated its efficacy in COPD patients.\(^{194}\)

A phase 3, multicenter, double-blind, randomized, placebo-controlled study assigned 1,411 patients with COPD to roflumilast 250 mcg (\(n=576\)), roflumilast 500 mcg (\(n=555\)), or placebo (\(n=280\)) given once daily for 24 weeks.\(^{195}\) Primary outcomes were post-bronchodilator FEV\(_1\) and health-related quality of life. Secondary outcomes included other lung function parameters and COPD exacerbations. Post-bronchodilator FEV\(_1\) at the end of treatment significantly improved with roflumilast 250 mcg (\(+74\) mL) and roflumilast 500 mcg (\(+97\) mL) compared with placebo (\(p<0.0001\)). Improvement in health-related quality of life was greater with roflumilast 250 mcg (\(-3.4\) units) and roflumilast 500 mcg (\(-3.5\) units) than with placebo (\(-1.8\) units), but the differences were not significant. The mean numbers of exacerbations per patient were 1.13, 1.03, and 0.75 with placebo, roflumilast 250 mcg, and roflumilast 500 mcg, respectively. Most adverse events were mild to moderate in intensity.

Two double-blind, multicenter trials studied patients older than 40 years with moderate-to-severe COPD who were randomly assigned to roflumilast 500 mcg or placebo once daily for 24 weeks in addition to salmeterol or tiotropium.\(^{196}\) The primary endpoint was change in pre-bronchodilator FEV\(_1\). In the salmeterol/roflumilast trial, 466 patients were assigned to and treated with roflumilast and 467 with placebo; in the tiotropium/roflumilast trial, 371 patients were assigned to and treated with roflumilast and 372 with placebo. Compared with placebo, roflumilast consistently improved mean pre-bronchodilator FEV\(_1\) by 49 mL (\(p<0.0001\)) in patients treated with salmeterol, and 80 mL (\(p<0.0001\)) in those treated with tiotropium. Similar improvement in post-bronchodilator FEV\(_1\) was noted in both groups. Roflumilast had beneficial effects on other lung function measurements in both groups. Nausea, diarrhea, weight loss, and headache were more frequent in roflumilast patients.

In 2 placebo-controlled, double-blind, multicenter trials, patients with COPD older than 40 years with severe airflow limitation, bronchitis symptoms, and a history of exacerbations were randomly assigned to roflumilast 500 mcg daily or placebo for 52 weeks.\(^{197}\) Primary endpoints were change in pre-bronchodilator FEV\(_1\) and the rate of exacerbations that were moderate (glucocorticosteroid-treated) or severe. Patients were assigned to treatment, stratified according to smoking status and treatment with long-acting beta agonists (LABA), and given roflumilast (\(n=1,537\)) or placebo (\(n=1,554\)). In both studies, the primary endpoints were achieved and were similar in magnitude. In a pooled analysis, pre-bronchodilator FEV\(_1\) increased by 48 mL with roflumilast compared with placebo (\(p<0.0001\)). The rate of exacerbations that were moderate or severe per patient per year was 1.14 with roflumilast and 1.37 with placebo (reduction 17%; \(p<0.0003\)). Adverse events were more common with roflumilast. In the pooled analysis, the difference in weight change during the study between the roflumilast and placebo groups was -2.17 kg. No trials have been conducted to assess the effects of roflumilast on COPD exacerbations when added to a fixed-dose combination product containing a LABA and ICS.\(^{198}\)

A 12-week, randomized, double-blind, parallel-group trial assessed roflumilast dose titration in patients with severe COPD associated with chronic bronchitis and \(\geq 1\) exacerbation within the last year (\(n=1,323\)).\(^{199}\) Patients were randomized to roflumilast 500 mcg once daily for 12 weeks, roflumilast 500 mcg every other day for 4 weeks then 500 mcg once daily for 8 weeks, or roflumilast 250 mcg once daily for 4 weeks followed by 500 mcg once daily for 8 weeks. Discontinuation was found to be lower in those assigned the initial 250 mcg dose compared to those assigned an initial 500 mcg once daily dose (OR, 0.66; 95% CI, 0.47 to 0.93; \(p=0.017\)).
tiotropium (Spiriva) versus placebo

The Understanding the Potential Long-Term Impacts on Function with Tiotropium (UPLIFT) trial was a large, randomized, double-blind, placebo-controlled trial that compared 4 years of therapy with either tiotropium or placebo in 5,993 patients with COPD who were permitted to use all respiratory medications except inhaled antimuscarinic drugs. The patients were at least 40 years of age with an FEV\(_1\) of 70% or less after bronchodilation and a ratio of FEV\(_1\)/FVC of 70% or less. The objective of the study was to determine whether treatment with tiotropium 18 mcg reduced the rate of decline of FEV\(_1\) over time in patients with COPD. The 2 co-primary endpoints were the yearly rate of decline in the mean FEV\(_1\) before the use of a study drug and short-acting bronchodilators in the morning (pre-bronchodilator) and after the use of a study drug (post-bronchodilator) from day 30 (steady state) until completion of double-blind treatment. Secondary endpoints included measures of rates of mean decline for both FVC and slow vital capacity (SVC), health-related quality of life as measured by the total score on SGRQ, exacerbations of COPD, and mortality. Patients were randomly assigned to the tiotropium group (n=2,987) or to the placebo group (n=3,006). Mean absolute improvements in FEV\(_1\) in the tiotropium group were maintained throughout the trial (ranging from 87 to 103 mL before bronchodilation and from 47 to 65 mL after bronchodilation), as compared with the placebo group (p<0.001). After day 30, the differences between the 2 groups in the rate of decline in the mean FEV\(_1\) at any time point were not significant. The mean absolute total score on the SGRQ was lower, indicating improvement, in the tiotropium group compared with the placebo group at each time point throughout the 4-year period (p<0.001). At 4 years and 30 days, tiotropium treatment was associated with a reduction in the risks of exacerbations, related hospitalizations, and respiratory failure, but tiotropium did not significantly reduce the rate of decline in FEV\(_1\).

In a subgroup analysis of the UPLIFT trial, data from 2,739 participants diagnosed with COPD (GOLD stage 2) were examined. The tiotropium group had a statistically insignificant lower decline of pre-bronchodilator FEV\(_1\) than the control group (35 mL per year versus 37 mL per year, p=0.38) and lower post-bronchodilator FEV\(_1\) (43 mL per year versus 49 mL per year, p=0.024). SGRQ scores were lower in the tiotropium group than the control group (p≤0.006 for all time points), indicating a statistically significant improved health status. Mean number of exacerbations was lower in the tiotropium group than the control group (0.56 per patient-year versus 0.70 per patient-year, p<0.0001). The results of this subgroup analysis provided further support for the rationale of starting a long-acting antimuscarinic (LAMA) in patients with moderate COPD.

tiotropium (Spiriva) versus ipratropium (Atrovent)

The Dutch Tiotropium Group evaluated and compared the efficacy and safety of tiotropium and ipratropium during long-term treatment of patients with stable COPD. Two-hundred eighty-eight patients with mean age 65 years and mean FEV\(_1\) 41% of predicted value participated in a 14-center, double-blind, double-dummy, parallel group study. Patients were randomized to receive either tiotropium 18 mcg once daily from a dry powder inhaler (HandiHaler; two thirds of patients) or ipratropium 40 mcg 4 times daily from a metered dose inhaler (one third of patients) for 13 weeks. Outcome measures were lung function, daily records of PEF, and the use of concomitant albuterol. During treatment, tiotropium achieved a significantly greater improvement than ipratropium in trough, average, and peak FEV\(_1\) levels, trough and average FVC levels, and weekly mean morning and evening PEF. The use of concomitant albuterol was also significantly lower in the tiotropium group (p<0.05). The only drug related adverse event was dry mouth (tiotropium 14.7% versus ipratropium 10.3%).
Two, 1-year, randomized, double-blind, double-dummy studies evaluated tiotropium 18 mcg once daily (n=356) with ipratropium 40 mcg 4 times daily (n=179). Mean baseline FEV₁ values were 41.9% of predicted value for tiotropium and 39.4% of predicted value for ipratropium. Trough FEV₁ at 1 year improved by 0.12 +/- 0.01 L with tiotropium and declined by 0.03 +/- 0.02 L with ipratropium (p<0.001). Tiotropium reduced the number of exacerbations by 24% (p<0.01), increased time to first exacerbation (p<0.01), and the time to first hospitalization for a COPD exacerbation (p<0.05) compared with ipratropium. Apart from an increased incidence of dry mouth in the tiotropium group, adverse events were similar between treatments.

tiotropium (Spiriva) versus salmeterol (Serevent)

A 6-month, randomized, placebo-controlled, double-blind, double-dummy, parallel-group study in 623 patients (tiotropium, n=209; salmeterol, n=213; and placebo, n=201) evaluated tiotropium 18 mcg once daily via dry-powder inhaler compared with salmeterol 50 mcg twice daily via metered dose inhaler. The study was conducted in patients with a baseline mean FEV₁ 40% of predicted value and a mean age of 65 years. Compared with placebo treatment, the mean pre-dose morning FEV₁ following 6 months of therapy increased significantly more for the tiotropium group (0.14 L) than the salmeterol group (0.09 L) (p<0.01). The difference between tiotropium and salmeterol was statistically significant (0.05 L; p<0.01). At study end, trough FVC had improved significantly above placebo at 0.25 L for tiotropium (p<0.001) and 0.13 L for salmeterol (p<0.001). The difference between tiotropium and salmeterol was 0.11 L (p<0.01). Both active drugs significantly reduced the need for rescue albuterol. Tiotropium patients also achieved meaningful changes in health-related quality of life compared to salmeterol patients.

Patients with COPD (tiotropium, n=402; salmeterol, n=405; placebo, n=400) were enrolled in two, 6-month, randomized, placebo controlled, double-blind, double-dummy studies of tiotropium 18 mcg once daily via HandiHaler or salmeterol 50 mcg twice daily via a metered dose inhaler. The 2 trials were combined for analysis of health outcomes consisting of exacerbations, health resource use, dyspnea (assessed by the transitional dyspnea index, TDI), health-related quality of life (assessed by SGRQ), and spirometry. Compared with placebo, tiotropium, but not salmeterol, was associated with a significant delay in the time to onset of the first exacerbation. Fewer COPD exacerbations per patient year occurred in the tiotropium group (1.07 events/year; p=0.222) or in the placebo group (1.49 events/year; p<0.05). The tiotropium group had 0.1 hospital admissions per patient year for COPD exacerbations compared with 0.17 for salmeterol and 0.15 for placebo (p=NS). SGRQ total scores improved by 4.2, 2.8, and 1.5 units during the 6-month trial for the tiotropium, salmeterol, and placebo groups, respectively (p<0.01 tiotropium versus placebo). Compared with placebo, TDI focal score improved in both the tiotropium group (1.1 units, p<0.001) and the salmeterol group (0.7 units, p<0.05). The difference between tiotropium and salmeterol was not significant (p=0.17).

tiotropium (Spiriva) + placebo versus tiotropium (Spiriva) + salmeterol (Serevent) OR fluticasone/salmeterol (Advair®)

A randomized, double-blind, placebo-controlled trial was conducted in Canada with 449 patients with moderate to severe COPD who had 1 year of treatment with tiotropium plus placebo, tiotropium plus salmeterol, or tiotropium plus fluticasone/salmeterol. The proportion of patients in the tiotropium plus placebo group who had episodes of an exacerbation (62.8%) was not different from that in the
tiotropium plus salmeterol group (64.8%; 95% CI, –12.8 to 8.8) or in the tiotropium plus fluticasone/salmeterol group (60%; 95% CI, –8.2 to 13.8). Tiotropium plus fluticasone/salmeterol improved lung function as measured by FEV₁ (p=0.049) and disease-specific quality of life (p=0.01), reduced the number of hospitalizations for COPD exacerbation (incidence rate ratio, 0.53; 95% CI, 0.33 to 0.86), as well as all-cause hospitalizations (incidence rate ratio, 0.67; 95% CI, 0.45 to 0.99), compared with tiotropium plus placebo. In contrast, tiotropium plus salmeterol did not statistically improve lung function or hospitalization rates compared with tiotropium plus placebo. It is noteworthy that more than 40% of patients who received tiotropium plus placebo and tiotropium plus salmeterol discontinued therapy prematurely, and many crossed over to treatment with open-label ICSs or LABA. The authors concluded that the addition of fluticasone/salmeterol to tiotropium therapy did not statistically influence rates of COPD exacerbation but did improve lung function, quality of life, and hospitalization rates in patients with moderate to severe COPD.

tiotropium (Spiriva) versus tiotropium (Spiriva) + formoterol (Foradil)

In a 12-week active-controlled, double-blind, multicenter trial, a total of 255 subjects with COPD were randomized to either a combination of formoterol 12 mcg twice daily plus tiotropium 18 mcg once daily in the morning or monotherapy with tiotropium 18 mcg once daily in the morning or monotherapy with tiotropium 18 mcg once daily in the morning.²⁰⁷ The primary efficacy variable was the area under the curve for FEV₁measured 0 to 4 hours after the morning dosing (FEV₁AUC₀–⁴h). Significantly greater improvements in the FEV₁AUC₀–⁴h were seen with formoterol plus tiotropium versus tiotropium alone at all time points. At endpoint, FEV₁AUC₀–⁴h increased 340 mL with formoterol plus tiotropium versus 170 mL with tiotropium alone (p<0.001). Improvements in trough FEV₁ with formoterol plus tiotropium versus tiotropium alone were 180 mL and 100 mL, respectively (p<0.01). Significantly greater reductions from baseline in symptom scores (p<0.05) and daytime albuterol use (p<0.04) were seen at endpoint with combination formoterol plus tiotropium versus tiotropium monotherapy. Both treatments were well tolerated.

tiotropium inhalation spray (Spiriva Respimat) versus placebo

Five confirmatory trials of tiotropium inhalation spray were conducted that involved a total of 6,614 patients (Spiriva Respimat, n=2,801; placebo, n=2,798). Trials 1 and 2 were 12-week, randomized, double-blind, placebo- and active- (ipratropium) controlled trials that evaluated bronchodilation.²⁰⁸ Trials 3 through 5 were 48-week, randomized, double-blind, placebo-controlled, trials that evaluated bronchodilation and effects on COPD exacerbations. The 5 trials enrolled patients who were 40 years of age or older with a clinical diagnosis of COPD, a history of smoking greater than 10 pack-years, an FEV₁ less than or equal to 60% of predicted, and a ratio of FEV₁/FVC of less than or equal to 0.7. All treatments were administered once-daily in the morning. Trials 1 through 4 utilized tiotropium inhalation spray 5 mcg and 10 mcg doses. Trial 5 only included the 5 mcg dose. The change from baseline in trough FEV₁ was the primary endpoint in all trials. Trials 3 through 5 included COPD exacerbations as primary endpoints.

Tiotropium inhalation spray exhibited significant improvement in trough FEV₁ compared to placebo in all 5 trials. The difference from placebo in trough FEV₁ at the end of treatment (95% CI) was as follows: Trial 1 was 0.11 L, Trial 2 was 0.13 L, Trial 3 was 0.14 L, Trial 4 was 0.11 L, and Trial 5 was 0.1 L. For Trials 3 and 4, the pooled analysis of exacerbation rate per patient year was specified as a primary endpoint, while the primary endpoint for Trial 5 was time to first exacerbation, but included exacerbation rate per patient year as secondary endpoint. Exacerbations were defined as respiratory events/symptoms with a
duration of ≥ 3 days with ≥ 2 of the following symptoms or new onset: shortness of breath/dyspnea/shallow rapid breathing, sputum production (volume), occurrence of purulent sputum, cough, wheezing, and chest tightness. In the analysis, Trials 3 and 4, tiotropium inhalation spray 5 mcg significantly reduced the number of COPD exacerbations compared to placebo with 0.78 exacerbations per patient year versus 1 exacerbation per patient year, respectively (RR, 0.78; 95% CI 0.67, 0.92). In Trial 5, treatment with tiotropium inhalation spray) delayed the time the time to first COPD compared to placebo (HR, 0.69; 95% CI, 0.63, 0.77); additionally, the exacerbation rate was also lower in tiotropium inhalation spray compared to placebo. In Trials 3 and 4, patients treated with tiotropium inhalation spray also used less rescue medication compared to patients on placebo.

In a sixth trial, a long-term, randomized, double-blind, double dummy, active-controlled trial that observed patients up to 3 years evaluated the risk of all-cause mortality associated with tiotropium inhalation spray (Spiriva Respimat, n=5,711) compared to tiotropium inhalation powder (Spiriva, n=5,694). The mean age was 65 years and approximately 70% of the subjects were male with the majority of the patients with GOLD 2 or GOLD 3 status (48% and 40% respectively). The mean post-bronchodilator was FEV\(_1\) 1.34 L with a mean FEV\(_1\)/FVC ratio of 50%. Both treatment groups had a median exposure to treatment for 835 days. The all-cause mortality was found to be similar between both groups (HR, 0.96; 95% CI, 0.84 to 1.09).

tiotropium/olodaterol (Stiolto Respimat) versus tiotropium or olodaterol

The efficacy of Stiolto Respimat is based on two 4-week dose-ranging trials (n=592) and 2 multicenter, phase 3, replicate, randomized, 52-week, double-blind active-controlled trials (n=5,162; Study 1, n=2,624; Study 2, n=2,538) in patients with COPD. Dose selection in the confirmatory trials was based on trials for the individual components of the drug, tiotropium and olodaterol. Patients were assigned to tiotropium/olodaterol (fixed combination) 2.5/5 mcg or 5/5 mcg, tiotropium 2.5 or 5 mcg, or olodaterol 5 mcg once daily via the Respimat inhaler for 52 weeks. Most patients were considered GOLD stage 2/3 (88.6%) and approximately one-third of patients were current smokers. The primary endpoint, FEV\(_1\) AUC\(_{0-3h}\) at 24 weeks, was 241, 256, 139, and 133 mL in the tiotropium/olodaterol 2.5/5 mcg, tiotropium/olodaterol 5/5 mcg, tiotropium 2.5 mcg, tiotropium 5 mcg, and olodaterol 5 mcg groups, respectively (p<0.0001 for tiotropium/olodaterol 5/5 mcg compared single components). Significant differences between the 5/5 mcg fixed combination and the individual components were also seen in the SGRQ score at 24 weeks (p<0.05 for both comparisons). Adverse effects were comparable between groups.

umeclidinium (Incruse Ellipta) versus placebo

Two randomized double-blind, placebo-controlled, parallel-group studies (Study 1 = 24 weeks; Study 2 = 12 weeks) were performed in patients with COPD to establish the efficacy of umeclidinium bromide on lung function. Each study enrolled patients with COPD, 40 years of age and older, with a smoking history of 10 pack-years or more, had a post-albuterol FEV\(_1\) ≤ 70% of predicted normal values, with a Modified Medical Research Council (mMRC) score of ≥ 2, and with a ratio of FEV\(_1\)/FVC of < 0.7. At the Study 1 screening, the mean post-bronchodilator percent predicted FEV\(_1\) was 47%, patients had a mean post-bronchodilator FEV\(_1\)/FVC ratio of 0.47, and the mean percent reversibility was 15%. During Study 1, patients’ received either umeclidinium bromide (62.5 mcg) or placebo. The primary endpoint was change from baseline in trough (pre-dose) FEV\(_1\) at day 169 compared to placebo. The study concluded that umeclidinium bromide resulted in a larger increase in mean change from baseline in trough (pre-dose...
FEV₁ compared to placebo (95% CI). Results from Study 2 were similar. SGRQ was used to measure patient health-related quality of life. Umeclidinium bromide showed an improvement in mean SGRQ total score compared with placebo at day 168 (-4.69; 95% CI, -7.07 to -2.31).

umeclidinium (Incruse Ellipta) versus tiotropium (Spiriva HandiHaler)

A 12-week, multicenter, randomized, blinded, double-dummy, parallel-group study was conducted in patients 40 years or older with symptomatic moderate to severe COPD (as defined by the ATS/ERS) and a smoking history of ≥ 10 pack-years, a pre-/post-albuterol/salbutamol FEV₁/FVC ratio of < 0.7, a post-albuterol/salbutamol FEV₁ of 30% to 70% predicted normal, and a dyspnea score of ≥ 2 on the modified Medical Research Council Dyspnea Scale.212 After the 7 to 14 day run-in period, patients (n=1,017) were randomized 1:1 to receive once daily umeclidinium 62.5 mcg (delivering 55 mcg) administered via the Ellipta DPI plus placebo administered via the HandiHaler, or once daily tiotropium 18 mcg (delivering 10 mcg administered via the HandiHaler plus placebo administered via the Ellipta DPI. Patients requiring long-term oxygen (> 12 hours/day), other maintenance COPD medications (excluding ICSs), and other select medications based on timeframe (e.g., systemic corticosteroids) were excluded; however, use of rescue albuterol/salmeterol was permitted during the trial. Active and placebo inhalers were identical in appearance. The primary endpoint was the trough FEV₁ at day 85 with a noninferiority margin set at -50 mL in the per-protocol (PP) population (n=976). Other outcomes evaluated included other respiratory endpoints in the intent-to-treat population, select patient reported outcomes (e.g., St. George’s Respiratory Questionnaire [SGRQ], COPD Assessment Test [CAT], rescue medication use), and safety endpoints. The mean change from baseline in trough FEV₁ was greater with umeclidinium than with tiotropium at day 85 in the per-protocol population with a difference of 59 mL (95% CI, 29 to 88, p<0.001). Similar results were observed in the analysis of trough FEV₁ at day 85 for the intent to treat population (n=1,017) (difference, 53 mL; 95% CI, 25 to 81, p<0.001). Umeclidinium demonstrated superior efficacy compared to tiotropium on the primary end point of trough FEV₁ at day 85. No differences were found in patient-reported outcomes, and adverse events were similar between the 2 group (occurring in 32% of patients treated with umeclidinium and 30% treated with tiotropium).

umeclidinium (Incruse Ellipta) versus placebo with background fluticasone furoate/vilanterol (Breo Ellipta) therapy

Two replicate, 12-week, double-blind, placebo-controlled, parallel-group multicenter trials assessed the efficacy of umeclidinium in 1,238 patients with COPD.213 Patients were randomized 1:1:1 to umeclidinium 62.5 mcg, umeclidinium 113 mcg, or placebo with open-label fluticasone/vilanterol background therapy. The primary endpoint was trough FEV₁ on day 85 and was significantly improved with the addition of umeclidinium compared to placebo (Study 1: 0.124 L with umeclidinium 62.5 mcg [95% CI, 0.093 to 0.154] and 0.128 L with umeclidinium 125 mcg [95% CI, 0.098 to 0.159]; Study 2: 0.122 L with umeclidinium 62.5 mcg [95% CI, 0.091 to 0.152] and 0.111 L with umeclidinium 125 mcg [95% CI, 0.081 to 0.141]. The 0 to 6 hour weighted mean FEV₁ values on day 84 compared to placebo were also significant. Results with the SGRQ were inconsistent; a difference was found in both studies with the 62.5 mcg dose but differed between studies using the 125 mcg dose. Adverse effects among groups were similar.

umeclidinium/vilanterol (Anoro Ellipta) versus umeclidinium versus vilanterol versus placebo

Two 6-month randomized, double-blinded, placebo-controlled, parallel-group clinical trials were performed to evaluate the efficacy of umeclidinium/vilanterol on lung function in patients with
COPD.214,215 In Trial 1, a total of 1,532 patients were randomized (3:3:3:2) to umeclidinium/vilanterol 62.5 mcg/25 mcg, umeclidinium 62.5 mcg, vilanterol 25 mcg, and placebo once daily using a dry powder inhaler (DPI). Primary endpoint was change from baseline in trough FEV\textsubscript{1} at day 169 (defined as the mean of the FEV\textsubscript{1} values obtained at 23 and 24 hours after the previous dose on day 168) compared with placebo and the individual components. All active treatments produced statistically significant improvement in trough FEV\textsubscript{1} compared with placebo on day 169 (0.072 to 0.167 L; all p<0.001). FEV\textsubscript{1} increases were significantly greater than the individual components (0.052 to 0.095 L; p≤0.004). Trial 2 results were similar to those observed in Trial 1 but were not included as it evaluated umeclidinium/vilanterol 125 mcg/25 mcg and umeclidinium 125 mcg which are not currently FDA-approved strengths.

umeclidinium/vilanterol (Anoro Ellipta) versus tiotropium (Spiriva HandiHaler), vilanterol, or umeclidinium

Two randomized, blinded, double-dummy, parallel-group, active-controlled, multicenter trials compared the efficacy and safety of once-daily umeclidinium 125 mcg/vilanterol 25 mcg, umeclidinium 62.5 mcg/vilanterol 25 mcg with tiotropium 18 mcg monotherapy, and either vilanterol 25 mcg monotherapy (Study 1; n=1,114) or umeclidinium 125 mcg monotherapy (Study 2; n=1,191) for 24 weeks in patients with moderate to very severe COPD.216 The primary efficacy endpoint of both studies was trough FEV\textsubscript{1} on day 169, as analyzed in the intention-to-treat population. In both studies, on day 169 there were improvements in trough FEV\textsubscript{1} for both doses of umeclidinium/vilanterol compared with tiotropium monotherapy (Study 1, umeclidinium 125 mcg/vilanterol 25 mcg: 0.088 L [95\% CI, 0.036 to 0.14; p=0.001]; Study 1, umeclidinium 62.5 mcg/vilanterol 25 mcg: 0.09 L [95\% CI, 0.039 to 0.141; p=0.0006]; Study 2, umeclidinium 125 mcg/vilanterol 25 mcg: 0.074 L [95\% CI, 0.025 to 0.123; p=0.0031]; Study 2, umeclidinium 62.5 mcg/vilanterol 25 mcg: 0.06 L [95\% CI, 0.01 to 0.109; p=0.0182]). Both doses of umeclidinium/vilanterol also improved trough FEV\textsubscript{1} compared with vilanterol monotherapy (umeclidinium 125 mcg/vilanterol 25 mcg: 0.088 L [95\% CI, 0.036 to 0.14; p=0.001]; umeclidinium 62.5 mcg/vilanterol 25 mcg: 0.09 L [95\% CI, 0.039 to 0.142; p=0.0006], but not compared with umeclidinium 125 mcg monotherapy (umeclidinium 125 mcg/vilanterol 25 mcg: 0.037 L [95\% CI, −0.012 to 0.087; p=0.14]; umeclidinium 62.5 mcg/vilanterol 25 mcg: 0.022 L [95\% CI, −0.027 to 0.072; p=0.38]). All treatments produced improvements in dyspnea and health-related quality of life. There were no significant differences in symptoms, health status, or risk of exacerbation between umeclidinium/vilanterol and tiotropium. The most common on-treatment, adverse event with severe intensity in both studies was acute exacerbation of COPD (1 to 4 patients across treatment groups in Study 1 and 1 to 6 patients in Study 2). There were 15 on-treatment serious adverse events across treatment groups in Study 1, and 9 to 22 in Study 2. Umeclidinium/vilanterol 125 mcg/25 mcg and umeclidinium 125 mcg are not FDA-approved strengths.

umeclidinium/vilanterol (Anoro Ellipta) versus tiotropium (Spiriva HandiHaler)

A 24-week, multicenter, multinational, double-blind, double-dummy, parallel-group, randomized controlled trial compared the efficacy and safety of umeclidinium/vilanterol 62.5/25 mcg once daily and tiotropium 18 mcg once daily in patients ≥ 40 years with moderate to severe COPD (n=905).217 Patients with pneumonia or hospitalization within the past 12 weeks were excluded. Rescue medication (albuterol) and consistently dosed ICSs were allowed. At Day 169, umeclidinium/vilanterol was superior to tiotropium in the primary outcome, trough FEV\textsubscript{1} measured at Day 169 (treatment difference, 0.112 L; 95\% CI, 0.081 to 0.144; p<0.001). Umeclidinium/vilanterol also demonstrated superiority in the weighted
mean FEV₁ over 0 to 6 hours following the dose on Day 168 (treatment difference, 0.105 L; 95% CI, 0.071 to 0.14; p<0.001) and in the following other endpoints: time to onset of action on Day 1, trough FVC on Day 169, percentage of patients achieving a ≥ 12% and ≥ 0.2 L increase in FEV₁ over baseline during Day 1, percentage of patients achieving a ≥ 0.1 L increase in FEV₁ over baseline on Day 169, and the peak FEV₁ on Day 168 (p<0.001 for all). Patients assigned umeclidinium/vilanterol used less rescue medication than those assigned tiotropium (p<0.001). The overall incidences of adverse effects were similar between groups.

umeclidinium/vilanterol (Anoro Ellipta) versus fluticasone propionate/salmeterol (Advair)

Two 12-week, multicenter, double-blind, parallel-group, double-dummy, randomized trials compared the efficacy of umeclidinium/vilanterol to fluticasone/salmeterol in patients with moderate to severe COPD (Study 1, n=706; Study 2, n=697).²¹⁸ Patients with infrequent exacerbations were randomized 1:1 to once-daily umeclidinium/vilanterol 62.5/25 mcg or twice-daily fluticasone/salmeterol 250/50 mcg. Key endpoints included 0 to 24 hour mean FEV₁ on Day 84 (primary), trough FEV₁ on day 85, dyspnea, and change in SGRQ score. Umeclidinium/vilanterol demonstrated significant improvement in lung function compared to fluticasone/salmeterol; the difference in FEV₁(0-24) on day 84 was 74 mL (95% CI, 38 to 110) in Study 1 and 101 mL (95% CI, 63 to 139 in Study 2; p<0.001 for both). Trough FEV₁ values were also superior with umeclidinium/vilanterol in both trials; however, no difference was seen between groups in dyspnea ratings or SGRQ improvement. Adverse event rates were similar between groups.

umeclidinium/fluticasone furoate/vilanterol (Trelegy Ellipta) versus fluticasone furoate/vilanterol (Breo Ellipta) versus umeclidinium/vilanterol (Anoro Ellipta)

The 52-week, double-blind, parallel-group IMPACT trial assessed rate of exacerbations in 10,355 patients ages ≥ 40 years with COPD.²¹⁹,²²⁰ Patients were randomized 2:2:1 to umeclidinium 62.5 mcg/fluticasone furoate 100 mcg/vilanterol 25 mcg (n=4,145) or fluticasone furoate 100 mcg/vilanterol 25 mcg (n=4,133) or umeclidinium 62.5 mcg/vilanterol 25 mcg (n=2,069). Eligible patients had FEV₁ < 50% predicted normal value and a history of 1 or more moderate or severe exacerbations in the prior 12 months, or an FEV₁ of 50% to 80% of predicted normal value. The primary endpoint of annual rate of moderate and severe exacerbations was 0.91/year for triple therapy, 1.07/year for fluticasone/vilanterol, and 1.21/year for umeclidinium/vilanterol; there was a 15% reduction with triple therapy compared to fluticasone/vilanterol [95% CI, 0.8 to 0.9, p<0.001]. Significant differences between triple therapy and fluticasone/vilanterol and umeclidinium/vilanterol were reported for the secondary endpoint of mean change from baseline in trough FEV₁, (difference of 97 mL [95% CI, 85 to 109] and 54 mL [95% CI, 39 to 69]; p<0.001 for both).
Asthma

tiotropium bromide inhalational spray (Spiriva Respimat) versus placebo (with background ICS therapy and with or without active comparator)

Efficacy of tiotropium bromide inhalation spray is based on 5 confirmatory trials in non-smoking adults (n=3,476) and 2 trials in adolescents aged 12 to 17 years.\(^{221}\) The adult (mean age = 46 years) trials consisted of one 12-week (Trial 1), 2 replicate 24-week (Trials 2 and 3), and 2 replicate 48-week (Trials 4 and 5) randomized, double-blind, placebo-controlled trials in adults with asthma. All trials included ICS background therapy (additional asthma treatments were also allowed) and rescue therapy.

Trial 1 compared once daily tiotropium 2.5 mcg, tiotropium 5 mcg, and placebo (n=309).\(^{222}\) After 12 weeks, the mean difference in peak (primary endpoint) and trough FEV\(_1\) of 2.5 mcg compared to placebo were 0.16 L (95% CI, 0.09 to 0.23) and 0.11 L (95% CI, 0.04 to 0.18), respectively (p-values not reported). The FEV\(_1\) improvement in the 5 mcg group was generally lower than improvement in the 2.5 mcg (peak data reported only as a composite with other trials; trough FEV\(_1\) increased by 11% in this trial, but was decreased in subsequent trials).

Trials 2 and 3 compared tiotropium 2.5 mcg once daily, tiotropium 5 mcg once daily, salmeterol 50 mcg twice daily, and placebo (Trial 2, n=524; Trial 3, n=509).\(^{223}\) Patients included had a FEV\(_1\) of 60% to 90% the predicted value. The primary outcomes were peak FEV\(_1\) and trough FEV\(_1\) at Week 24. Peak FEV\(_1\) responses were greater with both tiotropium doses and salmeterol compared to placebo in the pooled analysis (tiotropium 5 mcg versus placebo difference, 185 mL [95% CI, 146 to 223]; tiotropium 2.5 mcg versus placebo difference, 223 mL [95% CI, 185 to 262], and salmeterol versus placebo difference, 196 mL [95% CI, 158 to 234]; all p<0.0001 versus placebo). Trough FEV\(_1\) responses were greater with both tiotropium doses and salmeterol compared to placebo in the pooled analysis (tiotropium 5 mcg versus placebo difference, 146 mL [95% CI, 105 to 188]; tiotropium 2.5 mcg versus placebo difference, 180 mL [95% CI, 138 to 221], and salmeterol versus placebo difference, 114 mL [95% CI, 73 to 155]; all p<0.0001 versus placebo). Seven-question Asthma Control Questionnaire (ACQ-7) response was higher with all 3 active treatments compared to placebo (tiotropium 5 mcg OR, 1.32 [95% CI, 1.02 to 1.71; p=0.035]; tiotropium 2.5 mcg OR, 1.33 [95% CI, 1.03 to 1.72; p=0.031]; and salmeterol OR, 1.46 [95% CI, 1.13 to 1.89; p<0.0039]). Adverse effects were similar between groups.

Trials 4 and 5 compared tiotropium 5 mcg (2 puffs of 2.5 mcg) once daily to placebo once daily in 912 patients with airway obstruction that was not fully reversible (post-bronchodilator FEV\(_1\) ≤ 80%).\(^{224}\) The primary outcomes were peak FEV\(_1\) and trough FEV\(_1\) at week 24 and time to first asthma exacerbation at week 48. Peak FEV\(_1\) response was greater with tiotropium compared to placebo in both trials (Trial 4 difference, 86 mL [95% CI, 20 to 152; p<0.05]; Trial 5 difference, 154 mL [95% CI, 91 to 217; p<0.001]). Trough FEV\(_1\) response was also greater with tiotropium compared to placebo in both trials (Trial 4 difference, 88 mL [95% CI, 27 to 149; p<0.01]; Trial 5 difference, 111 mL [95% CI, 53 to 169; p<0.001]). Significant differences were also seen in peak FEV\(_1\) in both trials and trough FEV\(_1\) in Trial 5 (not significant in Trial 4) at 48 weeks (p<0.01 for all). Significant differences favoring tiotropium were also seen in peak and trough FVC and peak expiratory flow in the morning and evening at both 24 and 48 weeks (p<0.05 for all comparisons of tiotropium versus placebo). Adverse effects were similar between groups.

Efficacy in adolescents aged 12 to 17 years was evaluated in one 12-week (Trial 1) and one 48-week (Trial 2) randomized, double-blind, placebo-controlled parallel arm trials (n=789).\(^{225}\) Patients were assigned to tiotropium 2.5 mcg once daily, 5 mcg once daily, or placebo in addition to background therapy consisting...
of at least an ICS (Trial 1) or an ICS with ≥ 1 other controller medication (Trial 2). Trial 1 consisted of patients with severe asthma while Trial 2 consisted of patients with moderate asthma (mean age = 14.3 years). The primary endpoint, change in peak FEV₁ at 12 weeks (Trial 1) or 24 weeks (Trial 2), was 0.11 L (95% CI, 0.002 to 0.22) in Trial 1 and 0.13 L (95% CI, 0.03 to 0.23) in Trial 2.

Two double-blind, placebo-controlled trials of 12 and 48 weeks duration evaluated the safety and efficacy of tiotropium in a total of 801 asthma patients 6 to 11 years of age (mean age, 9 years). Patients were randomized to once-daily doses of tiotropium 2.5 mcg (n=271), tiotropium 5 mcg (n=265), or placebo (n=265). The 12-week trial enrolled patients with severe asthma who were on background treatment of ICS plus at least 1 other controller medication. The 48-week trial enrolled patients with moderate asthma on background treatment of ICS with or without another medication. The primary efficacy endpoint in both trials was change from baseline in peak FEV₁ 0-3hr. Patients were assessed at trial end in the 12-week trial and at week 24 in the 48-week trial. Tiotropium 2.5 mcg had a significant effect on the primary endpoint compared to placebo in the 48 week, but not the 12 week trial; mean differences in peak FEV₁ 0-3hr compared to placebo was 0.17 L (95% CI 0.11, 0.23) in the 48-week study and 0.04 L (95% CI -0.03, 0.10) in the 12-week trial. The tiotropium daily dose of 5 mcg is not approved in the U.S.

META-ANALYSES

COPD

A 2012 meta-analysis of 7 randomized controlled trials representing 12,223 patients was performed. The trials were identified from the Cochrane Airways Group Specialized Register (through February 2012) and other clinical trial registers. Studies were not omitted if standard COPD therapy co-administration was allowed, including stable dose ICSs. The following therapies were compared against tiotropium (via HandiHaler): salmeterol (4 studies), formoterol (1 study), and indacaterol (2 studies). Baseline characteristics matched well across the study treatment groups. Tiotropium demonstrated a statistically significant difference in the number of patients who experienced one or more exacerbations as compared to LABA (OR, 0.86; 95% CI, 0.79 to 0.93). SGRQ data was not pooled for the analysis due to heterogeneity amongst the studies; however, a subgroup analysis evaluating the type of LABA used showed indacaterol slightly favored over tiotropium for improvements to quality of life and tiotropium favored over salmeterol in reducing SGRQ deteriorations. When looking at secondary outcomes, tiotropium showed fewer hospitalizations related to COPD exacerbations as compared to LABA (OR, 0.87; 95% CI, 0.77 to 0.99); all-cause hospitalizations showed no difference. Non-fatal serious adverse events (OR, 0.88; 95% CI, 0.78 to 0.99) and study withdrawals (OR, 0.89; 95% CI, 0.81 to 0.99) were lower in the tiotropium group but were near parity. No statistical difference was seen between tiotropium and LABA with respect to mortality, FEV₁, and symptom score as measured by the Transitional Dyspnea Index (TDI).

A 2008 meta-analysis of 17 randomized, controlled trials of 14,783 patients was conducted to ascertain the cardiovascular risks including cardiovascular death, myocardial infarction (MI), and stroke of inhaled antimuscarinics (tiotropium or ipratropium bromide) versus control therapy (inhaled salmeterol, inhaled salmeterol/fluticasone, inhaled albuterol, or placebo). The study selection included trials of at least 30 days duration and reported on cardiovascular events. The primary outcome was a composite of cardiovascular death, MI, or stroke. The secondary outcome was all-cause mortality. The authors state that cardiovascular death is a more frequent cause of death in patients with COPD than respiratory causes. Based on the results, inhaled antimuscarinics significantly increased the risk of the composite
outcome of cardiovascular death, MI, or stroke (1.8% versus 1.2% for control; p<0.001). Further delineation for individual primary outcomes were also assessed and showed inhaled antimuscarinics significantly increased the risk of MI (1.2% versus 0.8%, p=0.03) based on 11 trials involving 10,598 patients. Risk of cardiovascular death was significantly increased by inhaled antimuscarinics (0.9% versus 0.5%, p=0.008) in 12 trials of 12,376 patients. On the other hand, inhaled antimuscarinics did not significantly increase the risk of stroke (0.5% versus 0.4% for control, p=0.2). Inhaled antimuscarinics also did not significantly increase the risk of all-cause mortality (2% versus 1.6%; p=0.06). Important to note in the meta-analysis is that many of the trials included were small and short-term, none of them were specifically designed to monitor risk of cardiovascular events, and some of the reporting of cardiovascular outcomes may have been incomplete. Further prospective studies that are adequately powered are needed to assess the cardiovascular safety of the inhaled antimuscarinics. In the meantime, the risks of adverse events (e.g., MI or cardiovascular death) versus benefits of symptomatic improvement (e.g., increase in exercise capacity, reduced COPD exacerbations and hospitalizations, and improved dyspnea) must be weighed when using the inhaled antimuscarinics. Unfortunately, alternative therapeutic options are limited for patients with COPD due to their differing adverse effect profiles.

Results from a systematic search including studies from MEDLINE and the Cochrane databases between 1966 and March 2007 on inhaled therapies and disease management were used to determine the effectiveness of management strategies for COPD (including inhaled therapies) in regards to exacerbations, hospitalization, deaths, and adverse effects. A meta-analysis of 27 randomized, double-blind, placebo or active-controlled trials with 15,276 patients compared tiotropium (Spiriva HandiHaler or Spiriva Respimat) to placebo found a lower risk of adverse effects (rate ratio [RR], 0.9; 95% CI, 0.87 to 0.93), serious adverse effects (RR, 0.94; 95% CI, 0.89 to 0.99), and fatal adverse effects (RR, 0.9; 95% CI, 0.79 to 1.01) compared to placebo. Likewise, a meta-analysis of 12 randomized controlled trials evaluating the efficacy of aclidinium in 9,547 patients with COPD also found a benefit with this agent compared to placebo. Aclidinium lowered the SGRQ total score (improved quality of life) by mean difference of -2.34 (95% CI, -3.18 to -1.51; 7 trials, 4,442 participants) when compared to placebo. Aclidinium also significantly improved pre-dose FEV₁ compared to placebo (mean difference, 0.09 L; 95% CI, 0.08 to 0.1; 9 trials, 4,963 participants). However, no difference was found in all-cause mortality.

A meta-analysis of 28 trials (n=14,909) comparing tiotropium (Spiriva HandiHaler or Spiriva Respimat) to placebo found a lower risk of adverse effects (rate ratio [RR], 0.9; 95% CI, 0.87 to 0.93), serious adverse effects (RR, 0.94; 95% CI, 0.89 to 0.99), and fatal adverse effects (RR, 0.9; 95% CI, 0.79 to 1.01) compared to placebo. Aclidinium lowered the SGRQ total score (improved quality of life) by mean difference of -2.34 (95% CI, -3.18 to -1.51; 7 trials, 4,442 participants) when compared to placebo. Aclidinium also significantly improved pre-dose FEV₁ compared to placebo (mean difference, 0.09 L; 95% CI, 0.08 to 0.1; 9 trials, 4,963 participants). However, no difference was found in all-cause mortality.

A meta-analysis of 27 randomized controlled trials (≥ 12 weeks duration) assessed the efficacy of long-acting anticholinergics (e.g., tiotropium, aclidinium, or glycopyrronium [comparable to glycopyrrolate]) in 48,140 patients with COPD. All products were found to be superior to placebo in number of
moderate-to-severe asthma exacerbations (tiotropium inhaled powder hazard ratio [HR], 0.75 for [95% CI, 0.68 to 0.84]; tiotropium inhalation spray HR, 0.67 [95%, 0.54 to 0.84]; aclidinium HR, 0.79 [95% CI, 0.63 to 0.98]; and glycopyrronium HR, 0.72 [95% CI, 0.59 to 0.88]), but no differences were found between agents. In studies of at least 6 months durations, aclidinium appeared to have the greatest efficacy and glycopyrronium had the least efficacy among the agents. A similar meta-analysis of 24 trials (n=21,311) included the above agents in addition to umeclidinium. Compared to placebo, aclidinium, glycopyrronium, tiotropium, and umeclidinium demonstrated a change in 24-week trough FEV₁ of 128.1 mL (95% CI, 84.1 to 172); 135.8 mL (95% CI, 123.1 to 148.3); 106.4 mL (95% CI, 95.45 to 117.3); and 115 mL (95% CI, 74.51 to 155.3), respectively. Significant differences were also seen with each agent compared to placebo in SGRQ improvement and rescue medication use; however, no significant differences were found between agents.

A meta-analysis of 27 trials (n=30,361) comparing efficacy of fixed-dose combinations of LABAs and LAMA agents (e.g., aclidinium/formoterol, glycopyrronium/indacaterol, tiotropium/olodaterol, and umeclidinium/vilanterol) found that all agents have similar efficacy. Notably, the aclidinium combination product is not available in the U.S. A Cochrane review compared the efficacy of the combination of a LABA/ICS and tiotropium to either LABA/ICS or tiotropium alone. Data were limited and the authors could not compare tiotropium plus LABA/ICS to LABA/ICS alone, but they were able to make comparisons for tiotropium plus LABA/ICS to tiotropium alone based on data from 6 trials (n=1,902). They found no differences with the addition of a LABA/ICS to tiotropium in mortality (OR, 1.8; 95% CI, 0.55 to 5.91) but did find a difference in all-cause hospitalizations (OR, 0.61; 95% CI, 0.4 to 0.92) and quality of life as measured by the SGRQ (mean difference, -3.46; 95% CI, -5.05 to -1.87) favoring the combination.

Asthma

Meta-analyses in asthma patients have also demonstrated superiority of tiotropium compared to placebo in adults and adolescents. A meta-analysis of 13 studies in 4,966 COPD patients ≥ 12 years of age found a significant improvement in asthma control with tiotropium (multiple formulations; as add-on therapy) compared to placebo (peak expiratory flow, 22 to 24 L/min; FEV₁, 140 to 150 mL; NNT for decreased exacerbations, 36). A similar meta-analysis of 3 studies in adolescents (ages) found significant improvements in change in FEV₁ peak (mean difference, 120 mL; p<0.001) and trough (mean difference, 100 mL; p<0.001) with tiotropium (Spiriva Respimat) compared to placebo. A significant difference was also seen in the percentage of patients who experienced an ACQ-7 worsening episode (defined as a change of ≥ 0.5) with tiotropium compared with placebo (2.1% versus 4.8%; number needed to treat [NNT]=38). Tiotropium also significantly decreased in the number of patients with at least 1 exacerbation compared with placebo (17.6% versus 23.8%, NNT=16). No significant differences in rescue medication use, withdrawals, withdrawals due to adverse events, and serious adverse effects were identified. A Cochrane review of 3 double-blind, randomized controlled trials comparing the addition of LAMAs (only tiotropium trials were included) to LABA/ICS therapy to LABA/ICS therapy alone in adults with asthma did not find a statistically significant difference in exacerbations (OR, 0.76; 95% CI, 0.57 to 1.02). However, the authors noted that there was a trend toward significance and data were limited to rule out a possible benefit. No clinical difference was seen in quality of life, as measured by the Asthma Quality of Life Questionnaire and defined as a change ≥ 0.5 (mean difference, 0.09; 95% CI, 0.24 to 1.47), or serious adverse effects.
SUMMARY

The combined COPD assessment illustrated in the 2019 updated Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines incorporates spirometric abnormality, as well as symptoms, exacerbation/hospitalization history, and comorbidities to help guide intervention, assigning patients to mixed severity-risk stratification groupings. Consequently, more focus can be placed on the goals of treatment, which are to reduce symptoms and risks while minimizing adverse effects. Treatment initiation may begin with the use of as-needed, short-acting bronchodilators followed by routine long-acting bronchodilators, inhaled corticosteroids (ICS), phosphodiesterase-4 (PDE4) inhibitors, long-term oxygen therapy, and even surgery. Regular use of long-acting beta2-agonists or short- or long-acting antimuscarinics has been shown to improve health status.

Albuterol is available in combination with ipratropium in a CFC-free MDI (Combivent Respimat) and as an inhalation solution for the treatment of COPD. The combination CFC-free MDI may be beneficial in reducing the number of puffs per day required as compared to treatment with the individual components.

Umeclidinium/vilanterol (Anoro Ellipta), aclidinium/formoterol (Duakir Pressair), glycopyrrolate/formoterol (Bevespi Aerosphere), glycopyrrolate/indacaterol (Utibron Neohaler), and tiotropium/olodaterol (Stiolto Respimat), once- or twice-daily antimuscarinic/LABA combinations, offer another option for the long-term maintenance treatment of COPD, for patients inadequately controlled with a single long-acting bronchodilator. For patients with moderate to severe airflow obstruction and chronic symptoms, the guidelines recommend maintenance treatment with an inhaled long-acting bronchodilator, either alone or in combination with other agents depending on disease severity. The single-agent antimuscarinic options in this class are ipratropium (Atrovent), aclidinium (Tudorza Pressair), glycopyrrolate (Lonhala Magnair, Seebri Neohaler), revefenacin (Yupelri), tiotropium (Spiriva, Spiriva Respimat), and umeclidinium (Incruse Ellipta). The long-acting, revefenacin, and tiotropium- and umeclidinium-containing agents are dosed once daily with a duration of action of 24 hours or greater. Aclidinium and glycopyrrolate-containing formulations, also long-acting, are dosed twice daily. Ipratropium requires up to 4 administrations daily. All of these agents have been shown to improve bronchodilation, dyspnea, exacerbation rates, and health-related quality of life. Adverse effects for antimuscarinic agents are limited primarily to dry mouth that appears to resolve with continued use. The inhalation solutions of glycopyrrolate (Lonhala Magnair) and revefenacin (Yupelri) are nebulized and provide another treatment administration option for patients with COPD, particularly for patients who have difficulty inhaling medication from other devices. The GOLD guidelines do not recommend one antimuscarinic agent or combination product over another and therapy should be individualized based on the patient’s limitation of airflow, symptoms, exacerbations, and comorbidities.

Roflumilast (Daliresp) is the only selective phosphodiesterase-4 (PDE4) inhibitor approved as a treatment option in COPD management. Unlike the other inhaled treatment options currently available, roflumilast is an oral tablet formulation taken once daily. Roflumilast is not a bronchodilator; it acts on the underlying inflammation and is not indicated for the relief of acute bronchospasm. Roflumilast’s modest benefit appears primarily to be demonstrated in patients with chronic bronchitis and frequent exacerbations.

In addition to its COPD indication, tiotropium inhalation spray (Spiriva Respimat) also carries an indication for asthma in patients ≥6 years of age. Efficacy has been demonstrated as add-on therapy to
an ICS (with or without other background therapies) in patients with asthma who are not controlled on their current regimen. It serves as a treatment option in latter stages of step-wise therapy in clinical practice guidelines.

REFERENCES

1 Ipratropium bromide solution [package insert]. Morgantown, WV; Mylan; May 2013.
2 Atrovent HFA [package insert]. Ridgefield, CT; Boehringer Ingelheim; August 2012.
3 Tudorza Pressair [package insert]. Wilmington, DE; AstraZeneca; April 2019.
7 Spiriva HandiHaler [package insert]. Ridgefield, CT; Boehringer Ingelheim; February 2018.
8 Spiriva Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; March 2019.
10 Ipratropium bromide/albuterol sulfate solution [package insert]. Parsippany, NJ; Actavis; August 2015.
11 Combivent Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; June 2016.
12 Duakril Pressair [package insert]. Morrisville, NC; Circassia; March 2019.
15 Stolto Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; May 2019.

Pfizer Inc. Spiriva Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; February 2018.

Combid: 44–52.

Pfizer Inc. Spiriva Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; February 2018.

Pfizer Inc. Spiriva Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; February 2018.

Pfizer Inc. Spiriva Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; February 2018.

Pfizer Inc. Spiriva Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; February 2018.

Pfizer Inc. Spiriva Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; February 2018.

93 Stilolet Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; May 2019.
94 Duaklir Pressair [package insert]. Morrisville, NC; Circassia; March 2019.
100 Tudorza Pressair [package insert]. Wilmington, DE; AstraZeneca; April 2019.
101 Ipratropium bromide/albuterol sulfate solution. [package insert]. Parsippany, NJ; Actavis; August 2015.
102 Combivent Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; June 2016.
103 Bevespi Aerolizer [package insert]. Wilmington, DE; AstraZeneca; May 2019.
107 Atrovent HFA [package insert]. Ridgefield, CT; Boehringer Ingelheim; August 2012.
109 Spiriva HandiHaler [package insert]. Ridgefield, CT; Boehringer Ingelheim; February 2018.
110 Spiriva Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; March 2019.
111 Stilolet Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; May 2019.
112 Duaklir Pressair [package insert]. Morrisville, NC; Circassia; March 2019.
117 Ipratropium bromide/albuterol sulfate solution. [package insert]. Parsippany, NJ; Actavis; August 2015.
118 Combivent Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; June 2016.
119 Bevespi Aerolizer [package insert]. Wilmington, DE; AstraZeneca; May 2019.
121 Utibron Neohaler [package insert]. East Hanover, NJ; Novartis; May 2019.
123 Atrovent HFA [package insert]. Ridgefield, CT; Boehringer Ingelheim; August 2012.
125 Spiriva HandiHaler [package insert]. Ridgefield, CT; Boehringer Ingelheim; February 2018.
126 Spiriva Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; March 2019.
127 Stilolet Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; May 2019.
135 Tudorza Pressair [package insert]. Wilmington, DE; AstraZeneca; April 2019.
136 Ipratropium bromide solution. [package insert]. Parsippany, NJ; Actavis; August 2015.
137 Combivent Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; June 2016.
142 Atrovent HFA [package insert]. Ridgefield, CT; Boehringer Ingelheim; August 2012.
143 Daliresp [package insert]. Wilmington, DE; AstraZeneca; January 2018.
144 Spiriva HandiHaler [package insert]. Ridgefield, CT; Boehringer Ingelheim; February 2018.
145 Spiriva Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; March 2019.
146 Stilolet Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; May 2019.
147 Duaklir Pressair [package insert]. Morrisville, NC; Circassia; March 2019.
152 Tudorova Pressair [package insert]. Wilmington, DE; AstraZeneca; April 2019.
153 Ipratropium bromide/albuterol sulfate solution. [package insert]. Parsippany, NJ; Actavis; August 2015.
154 Combivent Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; June 2016.
159 Aтроvent HFA [package insert]. Ridgefield, CT; Boehringer Ingelheim; August 2012.
161 Spiriva HandiHaler [package insert]. Ridgefield, CT; Boehringer Ingelheim; February 2018.
162 Spiriva Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; March 2019.
163 Stioltol Respimat [package insert]. Ridgefield, CT; Boehringer Ingelheim; May 2019.
164 Duaklir Pressair [package insert]. Morrisville, NC; Circassia; March 2019.
171 Tudorova Pressair [package insert]. Wilmington, DE; AstraZeneca; April 2019.
172 Food and Drugs Administration. Pulmonary-Allergy Drugs Advisory Committee. Available at: https://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Pulmonary-AllergyDrugsAdvisoryCommittee/default.htm. Accessed September 6, 2019.
177 Duaklir Pressair [package insert]. Morrisville, NC; Circassia; March 2019.
179 Bevespi Aerosphere [package insert]. Wilmington, DE; AstraZeneca; May 2019.
185 Seebrt Neohaler [package insert]. East Hanover, NJ; Novartis; February 2017aa.
194 Daliresp [package insert]. St. Louis, MO; Forest Laboratories; January 2018.
Page 42 | COPD Agents Review – September 2019

Proprietary Information. Restricted Access – Do not disseminate or copy without approval.
© 2004–2019 Magellan Rx Management. All Rights Reserved.

